Chemical Hygiene Plan

Revised May 2010
TABLE OF CONTENTS

1.0 Purpose
2.0 Scope
3.0 Definitions
4.0 Responsibilities
5.0 General Laboratory Procedures
 5.1 Behavior in the Laboratory
 5.2 Avoidance of Routine Exposure
 5.3 Personal Habits in the Laboratory
 5.4 Unattended Operations
 5.5 Lifting Heavy Objects
 5.6 Housekeeping
 5.7 Personal Protection
 5.8 Glassware
 5.9 Instrument and Equipment Care
 5.10 Working with Vacuum
6.0 Chemical Procurement, Distribution & Storage
 6.1 Procurement
 6.2 Inventory
 6.3 Distribution
 6.4 Storage
7.0 Hazard Identification, Signs and Labels
8.0 Environmental Monitoring
9.0 Maintenance and Inspections
 9.1 Maintenance
 9.2 Inspections
10.0 Medical Program
 10.1 Accidents
11.0 Personal Protective Equipment
 11.1 Eye Protection
 11.2 Gloves
 11.3 Clothing
 11.4 Hearing Protecting
 11.5 Respirators
 11.6 Employee Training
12.0 Safety Equipment
 12.1 General
 12.2 Safety Showers and Eye washes
 12.3 Fire Extinguishers
 12.4 Fire Alarms
12.5 Smoke or Heat Detectors 18
12.6 Fire Suppression System 18
12.7 Emergency Response Carts 19
13.0 Emergency Procedures 20
13.1 Emergency Reporting Procedures 20
13.2 First Aid 20
13.3 Chemical Spills 22
13.4 Chemical Spill Cleanup 22
14.0 Accident Reporting 23
15.0 Record Keeping 25
16.0 Employee Training 25
16.1 Training 25
16.2 Reference Materials 26
17.0 Engineering Controls 27
17.1 General Ventilation System 27
17.2 Local Ventilation Devices 27
17.3 Maintenance and Inspections 27
17.4 Ventilation Failure 27
18.0 Chemical Handling Procedures 28
18.1 General 28
18.2 Flammable Liquids 28
18.3 Corrosive Chemicals 32
18.4 Reactives 32
18.5 Compressed Gases 33
18.6 Radioactive Materials 34
18.7 Toxic Metals 34
18.8 Carcinogens, Mutagens, Teratogens, and Reproductive Toxins 35
19.0 Work With Substances of Moderate to High Chronic Toxicity or High Acute Toxicity 35
19.1 Allergens 36
19.2 EMBRYO TOXINS 36
20.0 Operations Requiring Prior Approval 36
21.0 Waste Disposal Procedures 36
21.1 Broken Glass 36
21.2 Infectious Waste 36
21.3 Radioactive Waste 37
21.4 Chemical Waste 37
21.5 Fluorescent Light bulbs 37
22.0 References 37
Appendices
1. Incompatible Chemicals 38
2. Inherent Properties of Chemicals precluding long term storage 39
3. Chemical Waste Disposal 40
1.0 PURPOSE

To ensure the protection of all laboratory employees from health hazards associated with hazardous chemicals in the laboratory. The precautions and guidelines in this Chemical Hygiene Plan are compatible with current knowledge and regulations.

2.0 SCOPE

This Chemical Hygiene Plan applies to all laboratory employees working on laboratory scale operations involving hazardous chemicals as stated in 29 CFR 1910.1450.
3.0 DEFINITIONS

Action Level - A concentration designated in 29 CFR part 1910 for a specific substance, calculated as an 8-hour time-weighted average, which initiates required activities.

Chemical Hygiene Officer - An employee who is qualified by training or experience, to provide technical guidance in the development and implementation of the provisions of the Chemical Hygiene Plan.

Chemical Hygiene Plan - A written program developed and implemented which sets forth procedures, equipment, personal protective equipment and work practices that are capable of protecting employees from the health hazards presented by hazardous chemicals used in the laboratory. This plan shall be reviewed and updated at least annually.

Designated Area - An area which may be used for work with select carcinogens, reproductive toxins or substances which have a high degree of acute toxicity. The designated area may be the entire laboratory, an area of the laboratories or a device such as a hood.

Hazardous Chemical - A material where studies conducted in accordance with established scientific principles indicate that acute or chronic health effects may occur in exposed employees. The term "health hazard" includes chemicals which are carcinogens, toxic or highly toxic agents, reproductive toxins, irritants, corrosives, sensitizers, hepatotoxins, agents which act on the hematopoietic systems, and agents which damage the lungs, skin, eyes, or mucous membranes.

Regulated Laboratory - A facility where the laboratory use of hazardous chemicals occurs. It is a workplace where relatively small quantities of hazardous chemicals are used on a non-production basis.

Laboratory Scale - Work with substances in which the containers are used for reactions, transfers, and other handling of substances are designed to be easily and safely manipulated by one person.

Laboratory Use of Hazardous Chemicals - Handling or use of such chemicals in which all of the following conditions are met.

1. Chemical manipulations are carried out on a laboratory scale.
2. Multiple chemical procedures or chemicals are used.
3. The procedures involved are not part of a production process nor in any way simulate a production process, i.e.: pilot plant or manufacturing process.
4. Protective laboratory practices and equipment are available and in common use to minimize the potential for employee exposure to hazardous materials.

Laboratory Worker - An individual employed in a laboratory workplace who may be exposed to hazardous chemicals in the course of his or her assignments.
Medical Consultation - A consultation which takes place between an employee and a licensed physician for the purpose of determining what medical examinations or procedures, if any, are appropriate in cases where a significant exposure to a hazardous chemical may have taken place.

Principal Investigator - Faculty member or designee of department chair.

Reproductive Toxins - Chemicals which affect the reproductive capabilities including chromosomal damage (mutation) and effects on fetuses (teratogeneses).

Select Carcinogen - Any substance which meets one of the following criteria:

1. It is regulated by OSHA as a carcinogen; or
2. It is listed under the category, known to be carcinogens, in the Annual Report on Carcinogens published by the National Toxicology Program (NTP)(latest edition); or
3. It is listed under group 1 (carcinogenic to humans) by the International Agency for Research on Cancer Monographs (IARC)(latest edition) or
4. It is listed in either Group 2A or 2B by IARC or under the category, reasonably anticipated to be carcinogenic by NTP, and causes statistically different tumor incidence in experimental animals in accordance with any of the following criteria:
 a. After inhalation exposure of 6-7 hours per day, 5 days per week, for a significant portion of a lifetime to dosages of less than 10mg/m³;
 b. After repeated skin application of less than 300mg/kg of body weight per week; or
 c. After oral dosages of less than 50mg/kg of body weight per day
4.0 RESPONSIBILITIES

The Institutional Biosafety Committee - The Institutional Biosafety Committee (IBC), a University committee appointed by the President, has ultimate responsibility for chemical hygiene and shall provide continuing support to ensure that laboratories are operating in accordance to the Chemical Hygiene Plan. The duties of the IBC are:

1. They shall review grant proposals with regard to select carcinogen or hazardous materials use.
2. They shall assist in the review of the Chemical Hygiene Plan annually to determine that all activities are being conducted safely and in accordance with OSHA regulations.
3. They will define conditions and procedures to ensure safe use of hazardous materials in laboratories.
4. The Committee will review hazardous materials management staffing and support allotted to the Risk Management and Safety Department and make a determination as to whether this staffing and support is sufficient to carry out the duties and responsibilities necessary to meet 29 CFR 1910.1450.
5. The IBC will review reports on non-compliance with these regulations with personnel involved and if necessary administrative action will be taken to ensure the provisions of these regulations are being met.

The Chemical Hygiene Officer - The Chemical Hygiene Officer (CHO) shall be approved by the IBC. The CHO shall be qualified by training and experience in chemical safety and/or industrial hygiene and a member of the Risk Management and Safety Department. The CHO is responsible for the development and implementation of chemical hygiene practices and policies in the laboratories. The responsibilities of the CHO or authorized representative are:

1. To ensure protective equipment is available and in working order.
2. Provide appropriate training.
3. To ensure that facilities and training for any hazardous material being used is adequate.
4. Conduct inspections of emergency equipment, chemical hygiene, and housekeeping.
5. Provide environmental monitoring where levels may indicate overexposure.
6. Monitor the procurement of select carcinogens and OSHA regulated substances.
7. Monitor use and disposal of chemicals used in the laboratory.
8. See that appropriate audits are maintained.
9. Know the current legal requirements concerning regulated substances.
10. Oversee the management of Material Safety Data Sheets received.
11. Develop and implement the Chemical Hygiene Plan.
12. Seek ways to improve the Chemical Hygiene Plan.
Principal Investigator - the principal investigator is responsible for chemical hygiene in his/her laboratory(s). The principle investigator shall:

1. Monitor the procurement, use and disposal of chemicals used in the laboratory.
2. Ensure that laboratory personnel know and follow the chemical hygiene rules.
3. Ensure all laboratory personnel understand standard operating procedures and understand the hazards of the materials and/or operations in the lab.
4. Notify Risk Management and Safety when any renovations or alterations of laboratory use or design take place.
5. Provide Risk Management and Safety with an annual inventory of the hazardous materials in his/her laboratory.
6. Assign the designated area(s) in his/her laboratory.
7. Ensure that monthly inspections of eye washes and fire extinguishers are conducted and that records are maintained. Refer to sections 12.2 and 12.3.

Laboratory Worker - each laboratory worker is responsible for planning and conducting all operations in accordance with the chemical hygiene procedures and developing good personal chemical hygiene habits.

5.0 GENERAL LABORATORY PROCEDURES

5.1 BEHAVIOR IN THE LABORATORY

1. Employees shall act in a professional manner at all times.
2. Horseplay and practical jokes are expressly forbidden.
3. Never work alone at a potentially dangerous activity.
4. Visitors to the laboratory must observe all safety regulations, including, but not limited, to the wearing of eye protection.
5. Employees shall be aware of the location and proper operation of laboratory safety equipment.

5.2 AVOIDANCE OF ROUTINE EXPOSURE

1. Always avoid skin contact with chemicals.
2. Do not smell or taste chemicals.
3. Never pipet by mouth. Use a vacuum or a pipette bulb.
4. Apparatus which may discharge chemical vapors or dusts that might produce adverse toxic effects must be vented into local exhaust devices.
5. Choose only those chemicals for which the quality of the available ventilation is appropriate.
6. Never underestimate the risk. Chemical reactions involving two or more substances may form reaction products that are significantly more toxic than the starting reactions. Always assume that all substances of unknown toxicity are toxic.
7. Always use common sense, good judgement, professional expertise and safety awareness when it comes to hazardous chemicals.

5.3 PERSONAL HABITS IN THE LABORATORY

1. Eating, drinking, chewing gum and cosmetic application are not permitted in the laboratory. Wash hands before doing any of these activities.
2. Smoking is allowed only in designated smoking areas outside the laboratory.
3. Food must not be stored in a refrigerator with chemicals. Do not use glassware or utensils which are used in laboratory operations.
4. Hands should be washed before using the restrooms and before eating, drinking or smoking. Wash well before leaving the laboratory area.
5. Confining long hair and loose clothing. Do not wear skimpy clothing (shorts, halter tops). Do not wear sandals and avoid the use of canvas shoes.
6. Be alert to unsafe conditions and see that they are corrected when detected.
7. No one should work alone in a lab when working with hazardous materials (chemical, biological or radioactive materials.)

5.4 UNATTENDED OPERATIONS

1. Only well understood reactions shall be permitted to run unattended. Lights should be left on and an appropriate sign should be placed outside the lab. Emergency provisions should be established to contain toxic substances in the event of a utility failure (such as cooling water) to an unattended operation.
2. The sign shall include:
 - Researcher Name
 - Office Phone
 - After Hours Phone
 - Research Advisor Name & Phone Number
 - Hazardous Materials involved
 - Potential hazards if any equipment or utilities (water, electric, gas, etc) are shut off

5.5 LIFTING HEAVY OBJECTS

1. Lift heavy objects by bending at the knees - use your legs, not your back.
2. Hold heavy objects close to your body.
3. Get help in handling objects too heavy or bulky for one person.
5.6 HOUSEKEEPING

1. Lab areas (bench tops, hoods, etc.) are to be kept clean and uncluttered. This will help prevent spillage, breakage, personal injuries and unnecessary contact with chemicals.
2. Any spills or accumulations of chemicals on work surfaces shall be removed as soon as possible with techniques that minimize residual surface contamination.
3. Floors and walkways should be maintained dry at all times.
4. Doorways and walkways shall not be blocked or used for storage.
5. Access to exits, emergency equipment, and utility controls shall never be blocked.

5.7 PERSONAL PROTECTION

1. Personnel must know the types of protective equipment available and use the proper type for each job. Everyone, including visitors, must wear the appropriate eye protection where chemicals are stored or handled.
2. Wear appropriate gloves when handling hazardous chemicals.
3. Do not use contact lenses in the laboratory unless absolutely necessary. Vapors and chemicals can get trapped under the lens and make it impossible to remove the lens to rinse the eye. Severe eye damage can occur. If they are worn, the supervisor must be informed so that special precautions can be taken.
4. The University has made arrangements with C&B Optical to obtain prescription safety glasses at a reduced cost. Contact Risk Management and Safety for details.
5. Personal Protective Equipment forms must be completed for each lab worker. PPE Forms are to be returned to Risk Management & Safety Department, 636 Grace Hall.

5.8 GLASSWARE

1. Inspect all glassware for defects and cracks. Weak glass can cause severe accidents through cuts, leaking hazardous chemicals or imploding under vacuum.
2. Always use lubricant when inserting glass tubing or glass thermometers into rubber stoppers.
3. Fire polish all cut glass tubing and rods.
4. Vacuum distillations or evaporations should be shielded in case of implosion. Only round-bottom flasks should be used for vacuum distillations. Erlenmeyer flasks may implode.
5. Exercise care in removing frozen glass stoppers. First try soaking glass stopper
in hot water to expand the glass. If this technique doesn't work, try soaking the frozen joints in Coca-Cola for a couple of hours. If it is necessary to remove the stopper by tapping, wrap the stopper in a cloth or paper towel and protect your hands with gloves in case of breakage.

5.9 INSTRUMENT AND EQUIPMENT CARE

1. Never attempt to operate a machine or instrument until you have been properly instructed in its use.
2. Keep the area around instruments and equipment clear of obstructing materials.
3. All belt driven equipment should have a belt guard to prevent hands and clothing from being pulled between belt and pulley (i.e.: vacuum pumps).
4. Equipment with frayed electrical cords should be repaired before use.
5. Do not leave oil and boiling water baths unattended. Take precautions to contain any hot oil and water spills.

5.10 WORKING WITH VACUUM

In an evacuating system, the higher pressure is on the outside, rather than on the inside, so that a break can cause an implosion rather than an explosion. The resulting hazards consist of flying glass, spattered chemicals and possibly fire. Special precautions including eye protection are required.

Equipment at reduced pressure is especially prone to rapid changes in pressure. This can create large pressure differences within the apparatus that can push liquids into unwanted locations, sometimes with very undesirable consequences.

Mechanical vacuum pumps should be protected by using cold traps, and vented to an exhaust hood or to the outside of the building. If solvents or corrosive substances are inadvertently drawn into the pump, the oil should be changed before any further use. The belts and pulleys on such pumps must be covered with guards.

5.10.1 Assembly of Vacuum Apparatus

Vacuum apparatus should be assembled so as to avoid strain. Joints should be assembled in a way that allows various sections of the apparatus to be moved if necessary without placing strain on the necks of the flasks. Heavy apparatus should be supported from below as well as by the neck. Vacuum apparatus should be placed well onto the bench or into the hood where it will not be easily bumped by passers-by or the hood doors.
5.10.2 Glass Vessels
Glass vessels at reduced pressure are capable of collapsing violently either spontaneously (if cracked or weakened in some other way) or from an accidental blow. Adequate shielding should be in place. It is advisable to check for flaws in the glassware each time the vacuum apparatus is used. Only round-bottomed or thick walled flat-bottomed flasks specifically designed for operation at reduced pressure should be used as reaction vessels. Repaired glassware is subject to thermal shock and therefore should not be used in reduced pressure procedures.

5.10.3 Dewar Flasks
Dewar flasks are capable of collapsing as a result of thermal shock or a slight scratch by a stirring rod. They should be shielded, either by a layer of friction tape or enclosed in wooden or metal container. This reduces the hazard of flying glass in case of collapse.

6.0 CHEMICAL PROCUREMENT, DISTRIBUTION & STORAGE

6.1 PROCUREMENT

1. All OSHA Standard Specific Chemicals and CDC Select Agents and other extremely toxic, environmentally harmful or reactive materials must have the approval of the Chemical Hygiene Officer or designee prior to purchase. Prior to purchasing approval, the following must be considered:
 a. Proper storage and handling procedures
 b. Are facilities adequate to safely handle the material, and
 c. Is there a designated area for carcinogen use in the laboratory.

2. A material safety data sheet (MSDS) shall be requested for all hazardous chemicals if the MSDS is not already on file.

3. No container should be accepted without an adequate identifying label. The label should include as a minimum the substance name, appropriate hazard warning, and precautionary measures.

4. Bulk quantity chemicals that are subdivided must be placed in containers that are labeled with the minimum information as stated above.

6.2 INVENTORY

1. Each Principal Investigator must provide a yearly inventory of all chemicals in his/her laboratory(s) to the Risk Management and Safety Department.
2. A copy should be available either in hard copy or online for inspectors during an inspection.

6.3 DISTRIBUTION

1. When chemicals are hand carried, the container should be placed in a secondary container to protect from breakage and spillage.
2. Freight elevators should be used when possible to prevent exposure to people on passenger elevators.
3. If a wheeled cart is used, it should be stable under the load and have wheels that are large enough to handle uneven surfaces without tipping over or stopping suddenly. The "tote" part of the cart should have sides to prevent roll or drop offs.

6.4 STORAGE

1. Both the storage and working amounts of hazardous chemicals shall be as small as practical.
2. All chemical containers must have a legible firmly attached label.
3. Chemical reagents shall be kept in closed containers when not in use.
4. Periodic inventories (at least annually) shall be conducted by laboratory personnel with unneeded items being discarded properly.
5. All flammables must be stored in a safety container, flammable materials cabinet, hood or refrigerator designed for that type of storage.
6. Compressed gas cylinders must be secured at all times. Safety caps should be in place when the cylinder is not in use.
7. Incompatible chemicals should be segregated.
7.0 HAZARD IDENTIFICATION, SIGNS AND LABELS

1. Labels on incoming containers of hazardous chemicals shall not be removed or defaced.

2. Material safety data sheets received with incoming shipments of hazardous chemicals shall be maintained by Risk Management and Safety Department. Material safety data sheets that are received by laboratory personnel or purchasing agent shall be forwarded to Risk Management and Safety. Material safety data sheets shall be made readily accessible to laboratory employees. Material Safety Data Sheets are available online at http://riskmanagement.nd.edu

3. A hazard review of materials not previously used in the laboratory shall be completed before actual handling occurs. This review will be conducted by the Principal Investigator with the assistance of the Chemical Hygiene Officer. Carcinogen and Extremely Hazardous Substance use will be reviewed by the Institutional Biosafety Committee.

4. Chemical substances developed in the laboratory shall be assumed to be hazardous in the absence of other information.

5. Storage containers of stock or prepared solutions shall be labeled with the proper chemical name.

6. Laboratory areas that have special or unusual hazards should be posted with warning signs. These hazards may by radiation, x-ray, laser operations, flammable materials, biological hazards or other special situations.

7. Telephone numbers for Principal Investigator and laboratory personnel to be contacted in case of an emergency, shall be posted on the door entering the lab, "Emergency Laboratory Safety Information" signs shall be provided by Risk Management and Safety Department for this purpose.

8. Telephone numbers of emergency personnel shall be posted in the laboratory.

9. Location of fire extinguisher(s), safety showers, eyewash stations shall be clearly marked.
8.0 ENVIRONMENTAL MONITORING

1. Employee's exposure to OSHA regulated substances shall not exceed the permissible exposure limits (PEL) specified in 29 CFR Part 1910, Subpart Z.

2. Employee exposures to any substance regulated by an OSHA standard shall be measured when there is reason to believe that exposure levels routinely exceed the action levels. Regular monitoring of airborne concentrations should not be necessary as long as care is taken to ensure that:
 a. The ventilation system (including hoods) is performing and is being used properly;
 b. Laboratory personnel are using the proper protective equipment; and
 c. Laboratory workers are following good hygiene and laboratory safety practices.

3. If monitoring indicates exposure over the action level or PEL, then compliance with the monitoring provision of the relevant standard is required.

4. Employees will be notified of any monitoring results in writing by Risk Management and Safety Department. This notification will take place within 15 days of the receipt of the monitoring.

5. Chemical Hygiene Officer (or designee) shall be responsible for determining when exposure monitoring is necessary or appropriate.
9.0 MAINTENANCE AND INSPECTIONS

9.1 MAINTENANCE
1. All local exhaust ventilation hoods and other engineering controls shall be functioning.
2. Improperly functioning equipment shall be reported immediately to maintenance.
3. Improperly functioning equipment, out of service equipment, and equipment under repair shall be locked out and tagged out and not restarted without the approval of Risk Management and Safety.

9.2 INSPECTIONS
1. Laboratory employees shall conduct the following inspections as indicated.
 a. Personal protective equipment will be inspected before each use. (Detailed procedure is outlined in Section 11, Personal Protective Equipment.)
 1. Eye and Face Protection
 2. Gloves
 3. Respirator
 4. Clothes
 b. Local exhaust hoods will be checked before each use.
 c. Eye washes and fire extinguishers shall be inspected once a month.
2. Chemical Hygiene Officer (or designee) will conduct the following inspections annually.
 a. Fire Extinguishers
 b. Safety Showers
 c. Eye washes
 d. Emergency lighting, illuminated exit signs
 e. Local exhaust ventilation hoods
 f. Compliance with the Chemical Hygiene Plan
10.0 MEDICAL PROGRAM

1. Medical surveillance, including medical consultation and follow-up shall be provided under the following conditions;
 a. Where exposure monitoring is over the action level for an OSHA regulated substance which has medical surveillance requirements.
 b. Whenever a laboratory employee develops signs or symptoms that may be associated with a hazardous chemical to which the employee may have been exposed to in the laboratory.
 c. Whenever a spill, leak or explosion results in the likelihood of a hazardous exposure, as determined by the Chemical Hygiene Officer.
 d. All respirator wearers.
 e. All emergency responders above the awareness level.

2. All medical examinations and consultations shall be performed by, or under the direct supervision of, a licensed physician, at no cost to the employee, without loss of pay and at a reasonable time and place.

3. Medical examinations and consultations shall be performed by the University Physicians.

4. Where medical consultations or examinations are provided, the examining physician shall be provided with the following, information:
 a. The identity of the hazardous chemical(s).
 b. A description of the conditions under which the exposure occurred, including quantitative exposure data if available.
 c. A description of the signs and symptoms of exposure that the employee is experiencing, if any.

5. When examinations or consultations are provided to employees, a written opinion from the examining physician shall be obtained by Risk Management & Safety Department. It shall include:
 a. Results of the medical examination and any associated tests.
 b. Recommendations for further medical follow-up.
 c. Any medical condition revealed that places the employee at an increased risk of exposure to a hazardous chemical found in the work place.
 d. A statement that the employee has been informed by the physician of the results of the examination or consultation.
10.1 ACCIDENTS

Accidents or injuries which occur in the laboratory and require medical treatment should be treated immediately. Medical treatment for injuries incurred at work will be administered by University Health Services professionals on campus. Necessary referrals to other physicians specialists, or facilities will be determined by Health Services.

University Health Services is staffed 24 hours a day, seven days a week when classes are in session. Hours are reduced during spring, fall, Christmas and summer breaks.

Medical treatment that cannot be provided by University Health Services will be administered by professionals at St. Joseph's Medical Center.

11.0 PERSONAL PROTECTIVE EQUIPMENT

The Chemical Hygiene Officer (or authorized representative) will be responsible for the selection of personal protective equipment, acquiring approved equipment, maintaining availability, and establishing cleaning and disposal procedures.

Chemical protective clothing must be removed before leaving the work area.

11.1 EYE PROTECTION

1. Safety glasses with side shields must meet the requirements of ANSI Z87.1
2. Face shields with safety glasses underneath or chemical splash goggles are required when transferring or pouring acid or caustic materials, or where a potential splash exists.
3. Employees are not permitted to wear contact lenses in the laboratory. Exceptions may be made if contact lenses are recommended by an ophthalmologist or optometrist and vision deficiency cannot be corrected with glasses. The physician must be informed of the nature of the employee's job. Chemical splash goggles must be worn over the contact lenses.
4. Before each use, eye and face protection is to be inspected for damage, i.e. cracks, debris, scratches. If deficiencies are noted, the equipment should be cleaned, repaired, or replaced before use.
11.2 GLOVES

1. Chemical resistant gloves shall be worn whenever the potential for skin contact with hazardous materials exists.
2. Gloves shall be removed before touching other surfaces (door knobs, telephone receivers, faucet handles).
3. Heat resistant gloves shall be used for handling hot objects. Asbestos gloves should not be used.
4. Low temperature gloves specifically designed for cryogenic use shall be worn when handling materials like dry ice or liquid nitrogen.
5. Before each use, gloves are to be inspected for damage and contamination, i.e. tears, punctures, discoloration. If deficiencies are noted, the gloves should be cleaned, repaired, or replaced before use.

11.3 CLOTHING

1. No sandals, or open-toed shoes are to be worn by laboratory employees. Canvas shoes should be avoided. The shoe should have a non-skid sole and should have a reasonable heel height.
2. Laboratory coats shall be worn by laboratory employees whenever in the work area.
3. Disposable clothing should be worn if working with highly toxic materials, such as carcinogens, mutagens or teratogens.
4. Halter Tops and shorts should not be worn in the laboratory (unless completely covered with a lab coat as they provide little protection from a potential splash or chemical spill.

11.4 HEARING PROTECTION

1. Hearing protection (ear mufffs or plugs) are required whenever employees are exposed to 85 dBA or greater as an 8 hour time weighted average (TWA).
2. Hearing protection is to be inspected before each use for tears and contamination. If deficiencies are noted, the hearing protector should be cleaned, repaired or replaced before use.

11.5 RESPIRATORS

Employees issued a respirator must follow all the requirements set forth in the Respiratory Protection Program.
11.6 **EMPLOYEE TRAINING**

Employees should not use any personal protective equipment until they have received instruction on the proper selection, use, and limitations of the equipment.

12.0 **EMERGENCY EQUIPMENT**

12.1 **GENERAL**

Each laboratory employee shall be familiar with the location, application, and the correct way to operate the following equipment:

1. Fire extinguishers
2. Fire Alarms
3. Smoke or heat detectors
4. Fire suppression systems
5. Safety Showers
6. Eyewash stations
7. Emergency response cart (Stepan & Nieuwland)

12.2 **SAFETY SHOWERS AND EYE WASHES**

1. Safety showers and eye washes should be within 25 feet of the work area for immediate emergency use.
2. Safety showers and eye washes should be plumbed and provide at least 15 minutes of flushing.
3. Inspections
 a. Monthly by laboratory employees
 1. Safety showers shall be checked for accessibility.
 2. Eye washes shall be checked for accessibility and operation.
 3. These inspections should be documented.
 b. Periodic
 1. Safety showers and eye washes will be tested annually by Preventive Maintenance.
 2. Adequate flow will be observed and documented.
12.3 FIRE EXTINGUISHERS

1. Fire extinguishers should be provided within 30 feet of travel and located along normal paths of travel.
2. Access must be maintained and the location should be conspicuously marked in an appropriate manner.
3. The fire extinguisher type and size must be selected for the appropriate hazards.
4. Inspections and servicing.
 a. Monthly inspections by laboratory employee
 1. The extinguisher is in its designated location.
 2. Access is maintained.
 3. The pin is in place and attached by an unbroken wire.
 4. No indication of physical damage.
 5. These inspections should be documented.
 6. If any problems are noted, the Notre Dame Fire Department should be notified immediately.
 b. Semiannual inspections by Notre Dame Fire Department or its authorized representatives.
 1. The extinguisher is in its designated location.
 2. Access is maintained.
 3. The pin is in place and attached by an unbroken wire.
 4. No indication of physical damage.
 5. These inspections should be documented.
 c. Annual servicing and maintenance by Notre Dame Fire Department or its authorized representative will involve a complete and thorough examination, including the mechanical parts, the amount and condition of the extinguishing agent, and the agent's expelling device. These activities will be documented.

12.4 FIRE ALARMS

1. Fire alarms must be provided along normal paths of travel, along exit routes.
2. Inspections occur every six months by the Notre Dame Fire Department or its authorized representative.

12.5 SMOKE OR HEAT DETECTORS

Smoke or heat detectors are inspected semiannually by the Notre Dame Fire Department or its authorized representative.

12.6 FIRE SUPPRESSION SYSTEMS

1. The fire suppression system must be selected based on the hazards.
2. Inspections will take place semiannually by the Notre Dame Fire Department or its authorized representative.
12.7 EMERGENCY RESPONSE CARTS

1. Emergency response carts are located in or near teaching laboratories in Stepan Chemistry and Nieuwland Science Halls and contain the following items.
 a. Respirator (organic vapor-acid gas)
 b. Gloves, goggles
 c. Spill kits for acids, caustics and solvents
 d. ABC fire extinguisher
 e. Metal fire extinguisher
 f. First aid kit: band-aids, alcohol rubs, kling gauze, adhesive tape
 g. Hand broom
 h. Plastic trash bags

2. The emergency response carts shall be inspected for missing or damaged items by the Chemical Hygiene Officer (or designee) before each semester. These inspections shall be documented.
13.0 EMERGENCY PROCEDURES

No universal emergency plan will do all things for all emergency situations. The most important component of emergency planning is prevention. Prevention measures range from employee training to facility inspections.

13.1 EMERGENCY REPORTING PROCEDURES

Call the Security Department for all emergencies. They will dispatch the Police, Fire Department, medical aid, or Risk Management and Safety.

FOR ALL EMERGENCIES
DIAL 911 from campus phones
DIAL 574-631-5555 from a Cellular phone

When reporting an emergency, give:
1. Location of victim or emergency
2. Name of victim
3. Name of caller
4. Extension number of caller
5. Facts concerning the emergency

In the event that a hazardous materials release cannot be not controlled by the laboratory employee, the University Emergency Response Plan must be followed.

13.2 FIRST AID

First aid is helpful for treating minor injuries or as an interim measure until trained medical personnel can take over. For accident victims who need medical care beyond first aid, call Security (631-5555) for transportation to the proper medical facility. Minor medical care will be provided by professionals at the University Health Services on campus. Emergency care will be provided by professionals at St. Joseph's Medical Center. Use procedures on the following page if you become involved in an emergency situation requiring first aid. Please report all undergraduate injuries, no matter how minor, to the professor responsible for the laboratory.
FIRST AID PROCEDURES

1. CHEMICAL BURNS:

Flush the affected area with cold water for at least 15 minutes. Flush eye for at least 15 minutes at an eye wash station or sink.

2. THERMAL BURNS:

Immerse the burned area in cold water or apply ice until the pain stops. Cover with a sterile dressing.

3. POISONS:

Call the Poison Center (1-800-382-9097) for assistance in administering poison antidotes.

4. BLEEDING:

Hold a clean cloth pad directly on the wound and apply hand pressure. Apply a tourniquet only as a last resort.

5. FIRES:

Put out burning clothing or hair with a cotton lab coat, fire blanket or water. If these resources are not available, make the victim roll on the ground to put out the flames.

6. INJURY FORMS TO BE COMPLETED

All employee injuries must be reported to your departmental office so the appropriate forms can be completed. If treatment will be performed at the University Health Services, a completed Supervisor's Report of an Injury form should accompany the injured employee. The State of Indiana Worker's Compensation Board, Form 33401 (previously form 24), must be completed within 5 days of the injury and submitted to the Risk Management and Safety RM&S Department, 636 Grace Hall. A Supervisor's Accident Investigation Report form should also be completed and forwarded to RM&S within 5 days of the accident. Copies of these forms are available through your departmental office. Questions should be referred to Carla Gruse at 631-7532 or gruse.1@nd.edu
13.3 CHEMICAL SPILLS

When lab spills occur, it is necessary to take prompt and appropriate action. Appropriate action will depend on the severity of the hazards associated with the particular chemical.

1. If the spill is minor and of known limited danger, begin the cleanup operation immediately.

2. If the spill is unknown in chemical composition or potentially dangerous (explosive, toxic fumes), evacuate the room and call Risk Management and Safety at 1-5037 or after hours to Security at 911 or 631-5555.

3. If it is suspected or known that the spill is extremely dangerous:
 a. Call Security (911) from a campus phone who will alert the Fire Department and Risk Management Safety.
 b. Evacuate the building.

13.4 CHEMICAL SPILL CLEANUP

Spill control begins by spreading an absorbent material, like vermiculite, on the spill. Spill cleanup kits are superior alternatives to vermiculite. Kits are made specifically for acids, alkalies, organic solvents and mercury and are available through RM&S or lab supply companies. These kits have many times the absorbent capacity of vermiculite. Kitty litter may also be used as a substitute for vermiculite.

Each laboratory shall have appropriate spill absorbents available in the lab for the types of chemicals that are stored or used in the laboratory

After allowing the chemical to absorb, scoop up the vermiculite and deposit it into a plastic disposal bag. Wipe up the contaminated surface with soap and water and a sponge and place in the disposal bag. Tie the bag and label it with a chemical discard tag. Call RM&S (1-5037) for disposal procedure or pickup. If in doubt about the proper spill cleanup procedures, call RM&S.
14.0 ACCIDENT REPORTING

1. All near accidents and all accidents, whether resulting in injury or damage, should be carefully analyzed and the results reported to all who might benefit.

2. Injuries requiring medical attention must be reported immediately and appropriate medical treatment provided.

3. STEP-BY-STEP REPORTING PROCEDURE
 a. Employee reports occupational injury or illness to immediate supervisor. Supervisor's primary responsibility is the welfare of the injured employee.
 b. Supervisor, or other qualified person, evaluates the severity of the occupational injury or illness.
 1. Extremely minor: (slight cut, scratch, etc.) minor first aid (i.e. band aid) may be given at the job site. An employee who desires additional treatment must be immediately sent to University Health Services.
 2. Serious injuries and illnesses: Security and/or ambulance must be summoned to transport the employee to an emergency facility.
 3. All others: Employee is referred to University Health Services for diagnosis, treatment or referral.

You should note that in any case where you are not sure of the severity of the injury or where the employee should be referred to, they should be immediately sent to University Health Services. Also, an injured employee desiring treatment from his family physician or a specialist must be sent to University Health Services-not to their own physician.

All work related illnesses (rash, etc.) require evaluation by physicians at the University Health Services.

 c. When the occupational injury results in referral to the University Health Services (including all occupational illnesses), the following requirements must be met:
 1. Supervisor completes the Supervisor's Report of an Injury to the University Health Services.
 2. The Supervisor's Report of an Injury Form must accompany the injured or ill employee to Health Services in order to be treated.
 3. The Supervisor's Report of an Injury Form is used as verification that the injury or illness occurred, or allegedly occurred, at work.
 4. The employee is treated and/or referred by a University Health Services' physician.
5. University Health Services will complete its Employee Injury/Treatment Report and provide a white copy to the employee's department that indicates the disposition of the employee (i.e. referred to hospital, sent home, returned to work, etc.).

6. Should an injury be such that the employee is unable to return to work, the University Health Services will telephone this status to the employee's Supervisor.

d. As soon as possible (but within 48 hours), the Supervisor, or other designated department official, must submit the following:

1. State of Indiana, Worker's Compensation Board Form #34401. This is the First Report of Injury Form.

 It must be forwarded to Carla Gruse, Risk Management and Safety Department, 636 Grace Hall, within 48 hours. It is important to note that insurance claims cannot be filed or paid until the report is processed by Ms. Gruse.

2. Notre Dame Supervisor's Accident Investigation Form. This form is available from Carla Gruse, Risk Management and Safety Department (RM&S).

 This is an in-house form to insure that accidents are investigated by the supervisor, and any necessary actions are taken to prevent a recurrence.

 The completed form is forwarded to Mike McCauslin, RM&S, as soon as possible.

 All injury or worker compensation forms can be obtained from Risk Management and Safety Department.
15.0 RECORD KEEPING

1. Accident/incident records and OSHA 200 forms shall be retained for 5 years by the Risk Management and Safety Department.
2. Medical records shall be retained for employment for 30 years.
3. Inventories of hazardous chemicals used/stored in the laboratory shall be kept by the Chemical Hygiene Officer for 5 years.
4. Industrial hygiene monitoring records shall be maintained for 30 years.

16.0 EMPLOYEE TRAINING

16.1 TRAINING

1. All laboratory employees shall be trained on the hazards of chemicals present in their work area.
2. The aim of the training program is to assure that all individuals working in a laboratory are adequately informed about safe laboratory practices, risks involved and procedures to follow in case of an emergency.
3. This training will be provided at the time of the employee's initial assignment to the work area where hazardous chemicals are present. The training shall also be conducted when there is a change in work assignments involving new exposure situations.
4. The training shall be provided by the Chemical Hygiene Officer or designee.
5. The training shall include:
 a. Methods and observations that may be used to detect the presence or release of a hazardous chemical
 b. Physical and health hazards of chemicals in the work area
 c. Handling of hazardous materials - acquisition to disposal
 d. Fire extinguisher training
 e. Personal protective equipment
 f. Interpretation of a MSDS
 g. Engineering controls
 h. Emergency procedures
 i. Personal hygiene
 j. Location, availability and contents of the written Chemical Hygiene Plan.
 k. Signs and symptoms associated with exposure associated to hazardous chemicals used in the laboratory.
16.2 REFERENCE MATERIALS

1. Material Safety Data Sheets shall be maintained by the Chemical Hygiene Officer for all hazardous chemicals used in the laboratory. These will be located at 636 Grace Hall. Additional locations are listed below:
 a. Radiation Laboratory MSDS- Rad Lab Stockroom
 b. Chem/Physics Library
 c. On the internet

2. The following references are available in the Risk Management and Safety Department Library:
 f. SAFETY - The Sigma-Aldrich Library of Chemical Safety Data., 1st Edition, 1985 (Sigma-Aldrich Corp., P.O. Box 355, Milwaukee, WI 53201).
17.0 ENGINEERING CONTROLS

17.1 GENERAL VENTILATION SYSTEM

1. General laboratory ventilation shall provide air flow into the laboratory from non-laboratory areas and exhausted to the exterior of the building.
2. The system should ensure that laboratory air is continually replaced, preventing increase of air concentrations of toxic substances during the working day.
3. Air intakes for a laboratory building should be located in such a way that reduces the possibility that the input air will be contaminated by exhaust air.

17.2 LOCAL VENTILATION DEVICES

1. The fume hood is the primary local ventilation device in a laboratory.
2. Other local ventilation devices include ventilated storage cabinets, glove boxes, canopy hoods, snorkels, etc.
3. Local exhaust ventilation should not be located near doors, windows, air diffusers, fans and other sources of cross drafts.
4. All reactions that produce unpleasant odors and/or potentially hazardous fumes, vapors, or gases must be run with or in a local ventilation device.
5. The sash of the hood is to be lowered to within 6" of the floor of the hood when the hood is in use to maintain effectiveness of the ventilation system and personal protection.
6. Hoods are not intended primarily for storage of chemicals. Materials stored in hoods should be kept to a minimum and they should not block vents or alter airflow patterns.
7. Some hoods are designed for specific hazards such as perchloric acid. Be sure to use the proper hood.

17.3 MAINTENANCE AND INSPECTIONS

The quality and quantity of ventilation shall be evaluated upon installation, annually and whenever a change in local ventilation devices is made. These inspections should be documented.

1. Capture velocity should be measured with a velocity meter. The minimum capture velocity at the face of the hood should be 100 fpm at 12" sash opening.
2. Exhaust fan maintenance (penthouse fans/blowers) are checked yearly by Preventive Maintenance.

17.4 VENTILATION FAILURE

In case of hood failure and there is a hazardous chemical release, notify Security at 911 and
evacuate the area.

18.0 CHEMICAL HANDLING PROCEDURES

18.1 GENERAL

Know as much as possible about the chemical you are handling. Read the container label, material safety data sheets, literature in the library and consult with your supervisor or the Chemical Hygiene Officer.

18.2 FLAMMABLE LIQUIDS

A flammable liquid means any liquid with a flash point below 100°F (37.8°C). A combustible liquid means any liquid with a flashpoint at or above 100°F (37.8°C) but below 200°F (93.3°C).

18.2.1 HAZARDS

1. Vapors can form an ignitable mixture in air.
2. Many flammable liquids are solvents and are potentially hazardous by inhalation.
3. Skin contact should be avoided, irritation or skin absorption are possible with some flammable chemicals.
4. Damage to the eyes ranges from irritation to severe damage.

18.2.2 STORAGE

Storage of Flammable Liquids

The OSHA standard for the maximum storage of flammable liquids is as follows. For more information, refer to the OSHA General Industry Standards.

The maximum capacity to be stored in a storage cabinet is 60 gallons of flammable or 120 gallons of combustible liquids. Of these volumes, the following table lists the minimum allowable capacity of containers to be stored within the storage cabinet.
<table>
<thead>
<tr>
<th>Classification</th>
<th>FLAMMABLE LIQUIDS</th>
<th>COMBUSTIBLE LIQUIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IA</td>
<td>IB</td>
</tr>
<tr>
<td>Flash Point</td>
<td><73°F</td>
<td><73°F</td>
</tr>
<tr>
<td>Boiling Point</td>
<td><100°F</td>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM QUANTITY PER CONTAINER

<table>
<thead>
<tr>
<th>Container Type</th>
<th>IA</th>
<th>IB</th>
<th>IC</th>
<th>II</th>
<th>IIIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass or plastic</td>
<td>1 pt</td>
<td>1 qt</td>
<td>1 gal</td>
<td>1 gal</td>
<td>1 gal</td>
</tr>
<tr>
<td>metal (sealed from mfg)</td>
<td>1 gal</td>
<td>5 gal</td>
<td>5 gal</td>
<td>5 gal</td>
<td>5 gal</td>
</tr>
<tr>
<td>safety cans</td>
<td>2 gal</td>
<td>5 gal</td>
<td>5 gal</td>
<td>5 gal</td>
<td>5 gal</td>
</tr>
<tr>
<td>metal drums (DOT spec)</td>
<td>60 gal</td>
<td>60 gal</td>
<td>60 gal</td>
<td>60 gal</td>
<td>60 gal</td>
</tr>
</tbody>
</table>

The maximum amount to be stored outside of a storage cabinet in any one fire area is 25 gallons for the other four classes. They all must be stored in safety containers.

Each storage cabinet must be located in a minimum of three feet away from any other solvent storage cabinet.

It is recommended that each laboratory within a section (room, bay, etc.) not possess, outside of a solvent storage cabinet, more than 6 gallons of class IA liquid in an appropriate safety container and not more than 30 gallons of class IB, IC, or IIIA liquids in the appropriate safety containers.

As a general rule, once metal cans are opened the contents should be transferred immediately into safety containers. Since static charge can build up while pouring liquids, **proper grounding and bonding is essential**! If using alligator clips, make sure the contact surface is metal - not paint. For a paint surface, carefully scrape, remove with a solvent or use a screw-type clamp to get a metal-to-metal contact. Adequate ventilation is also necessary. Don’t forget eye protection.

Solvents are a necessary part of every laboratory and have the potential for causing a lot of trouble, but with common sense they can be handled safely.
Definitions

A) Flammable Liquids

Flammable Liquids shall be divided into two classes of liquids as follows:

1) Class I liquid shall include those having flash points below 100°F and may be subdivided as follows:
 a) Class IA shall include those having flash points (closed cup) below 73°F and having a boiling point at or below 100°F.
 b) Class IB shall include those having flash points (closed cup) below 73°F and having a boiling point at or above 100°F.
 c) Class IC shall include those having flash points (closed cup) at or above 73°F and below 100°F.

2) Class II liquids shall include those having flash points (closed cup) at or above 100°F and below 140°F.

B) Combustible Liquids

Combustible liquids shall mean any liquid having a flash point (closed cup) at or above 140°F and shall be known as Class III liquids. Class IIIA shall include those having flash points (closed cup) at or above 140°F and below 200°F. Class IIIB shall include those having flash points (closed cup) at or above 200°F.

C) Aerosols

Aerosols labeled “Flammable” shall be considered Class IA liquids for the purposes of storage.

D) Flash Point

Flash point is the temperature at which a liquid has a vapor pressure sufficient to form an ignitable mixture in the air near the surface of the liquid. Open cup flash points vary several degrees higher than close cup flash point.

E) Fire Area

An area of a building separated from the remainder of the building by construction having a fire resistance of at least 1 hour and having all communication openings properly protected by an assembly having a fire resistance rating of at least 1 hour.
F) Safety Can

Safety can shall mean an approved container, of not more than 5 gallons capacity, having a spring-closing lid and spout cover and so designed that it will safely relieve pressure when subjected to fire exposure. It shall be painted red.

G) Safety Storage Cabinet

Storage cabinets shall be designed and constructed to limit the internal temperature to not more than 325°F when subjected to a 10-minute fire test using standard temperature set forth in standard methods of fire tests of building construction material NFPA-251-1969. All joints and seams shall remain tight and the door shall remain securely closed during the fire test. Cabinets shall be labeled with conspicuous lettering, “Flammable, Keep Fire Away.”

18.2.3 CONTROLS

1. Work in the hood as much as possible.
2. All spills must be cleaned up immediately and the spill area must be properly decontaminated.
3. Transfer from drums only when both drum and safety can are grounded and bonded.
4. Emergency showers and eye washes shall be used when skin or eye contact occur. Get first aid attention immediately.
5. Care should be taken when using hotplates to heat flammable liquids. Many models of hotplates are not intrinsically safe. (The heating element is not sealed). Vapors can travel under the plate and ignite. Use heating mantles whenever possible.
18.3 **CORROSIVE CHEMICALS**

A corrosive chemical is a chemical that causes visible destruction of, or irreversible alterations in, living tissue by chemical action at the site of contact.

18.3.1 **HAZARDS**

Contact with skin, eyes, respiratory or digestive tract causes severe irritation or burns.

18.3.2 **STORAGE**

1. Always store concentrated acids and bases in an appropriate cabinet or drip trays.
2. Always store oxidizing acids (nitric, sulfuric, perchloric) away from organic chemicals, paper, wood, or other flammables.
3. Drip tray residues should be cleaned regularly.

18.3.3 **CONTROLS**

1. Wear protective clothing.
2. Wear splash goggles.
3. When pouring or transferring corrosives, never add water to concentrated mineral acids or bases.
4. In case of splash:
 a. Flush affected area with large amounts of water for at least 15 minutes.
 b. Remove contaminated clothing.
 c. Seek medical attention.

18.4 **REACTIVES**

A reactive (unstable) chemical is one which in the pure state, or as produced or transported, will vigorously polymerize, decompose, condense or will become self-reactive under conditions of shock, pressure or temperature.

18.4.1 **HAZARDS**

1. Water sensitive chemicals react violently in the presence of water.
2. Pyrophoric materials ignite in air at or below room temperature in the absence of added heat, shock or friction.

18.4.2 **STORAGE**

1. Store water reactives according to label directions.
2. Pyrophorics should be stored in an atmosphere of inert gas or under kerosene; to exclude air.
18.4.3 CONTROLS

1. Wear proper safety equipment.
2. Read precautionary label.
3. Use only in a hood/glove box.

18.5 COMPRESSED GASES

Compressed gas means:
1. a gas or mixture of gases having in a container, an absolute pressure exceeding 40 psi at 70°F (21.1°C); or
2. a gas or mixture of gases having, in a container, an absolute pressure exceeding 104 psi at 130°F (54.4°C) regardless of the pressures at 70°F (21.1°C); or
3. a liquid having a vapor pressure exceeding 40 psi at 100°F (37.8°C) as determined by ASTM D-323-72.

18.5.1 HAZARDS

1. Compressed gases may be flammable, toxic or corrosive.
2. Compressed gases which are heated may result in an explosion.
3. Gas cylinders with a broken valve head becomes a missile capable of penetrating walls.

18.5.2 STORAGE AND USE

1. General Standards
 a. All compressed gas cylinders must be secured to wall or lab bench. Cylinder stands or supports for smaller bench size gas cylinders.
 b. Leave valve safety caps in place except when the cylinder is in use.
 c. Cylinders shall be clearly marked with the content name. Do not remove or deface labels, decals, etc., provided by the supplier for identification.
 d. Cylinders shall be clearly marked with the content name. Do not remove or deface labels, decals, etc., provided by the supplier for identification.
 e. Leave valve safety caps in place except when the cylinder is in use.
 f. Valve adapters should not be used.
 g. A pressure-regulated device shall be used at all times to control the flow of gas from a cylinder.
 h. Never attempt to repair or alter cylinder valves or safety relief devices.

2. Liquid Nitrogen
 Individuals working with liquid nitrogen should wear eye protection and cryogenic gloves or use protective thermal pads to avoid “burns”.
3. Pressure Regulators and Needle Valves

Needle valves and regulators are designed specifically for different families of gases. Use only the properly designed fittings.

a. Threads and surfaces must be clean and tightly fitted. Do not lubricate.
b. Tighten regulators and valves firmly with the proper size wrench (Avoid using adjustable wrenches or pliers as they can damage nuts). Do not force tight fits.
c. Open valves slowly. Do not stand direct in front of the gauges. (Gauge face may blow out). Do not force frozen valves.
d. Shut off cylinders when not in use.
e. Use new or good tubing (Tygon, ideally, not old cracked rubber tubing) to transfer toxic gases from pressurized cylinders.
f. Seal the regulator or needle valve to the cylinder over the threads with Teflon tape to insure a good seal.
g. Lecture bottles should have a lead washer present when using a needle valve. With the needle valve open and the cylinder valve closed, there should be a good vacuum on the hose and valve. If not, you have a leak. Don’t take chances - - fix it.

4. Leak Testing

Cylinders and connections should be tested by “Snoop” or a soapy water solution.

18.5.3 CONTROLS

1. Always open valves cautiously and slowly.
2. Return empty.
3. For standard operation procedure or regulators and needle valves.

18.6 RADIOACTIVE MATERIALS

Refer to the Radiation Safety Manual for hazard identification, storage and control measures.

18.7 TOXIC METALS

18.7.1 HAZARDS

These materials are toxic by inhalation, ingestion and possible skin absorption.

18.7.2 STORAGE

1. Store only the minimum quantity necessary.
2. Make sure lids are replaced securely.

18.7.3 CONTROLS

1. Work in the hood as much as possible.
2. Spills should be cleaned up immediately.

18.8 CARCINOGENS, MUTAGENS, TERATOGENS AND REPRODUCTIVE TOXINS

18.8.1 HAZARDS

Exposures can potentially induce carcinogenesis, mutagenesis, or adverse reproductive outcomes.

18.8.2 STORAGE

1. Maintain the minimum quantity necessary.
2. Store these chemicals in the hood, glove box or vented cabinet.

18.8.3 CONTROLS

1. Wear disposable protective clothing.
2. Work only with adequate engineering controls, such as hoods, glove boxes, etc.
3. Work in designated area ONLY (See Section 19.0).

19.0 WORK WITH SUBSTANCES OF MODERATE TO HIGH CHRONIC TOXICITY OR HIGH ACUTE TOXICITY

1. A designated area must be established for work with "select carcinogens", reproductive toxins and substances which have a high degree of acute toxicity. This area will be assigned by the Principal Investigator. It will be conspicuously marked by a warning sign.
2. Access to designated areas will be restricted to personnel who are trained about the hazards and safe handling of the materials.
3. Work with these materials should take place in a fume hood, glove box or similar equipment.
4. No food, beverages or tobacco products should be permitted in the designated areas.
5. Workers should wash their hands before leaving the area.
6. Protective clothing worn in designated areas should not be worn outside of that area.
7. Maintain records of the amounts of these materials used and stored and the names of workers involved.
8. Pre-emergency planning must take place before working with these materials.
9. Assure that emergency equipment and materials to minimize exposure to people and property are available in case of emergency.
10. All containers of these substances must be labeled with identity and warning.
Certain toxic materials require additional handling procedures. See below.

19.1 ALLERGENS (Examples: diazomethane, isocyanates, bichromates)

A wide variety of substances can produce skin and lung hypersensitivity. Because of this variety and the varying response of individuals, suitable gloves should be used to prevent hand contact with allergens.

19.2 EMBRYO TOXINS (Examples: organomercurial, lead compounds, formamide)

1. Women of child bearing potential should take care to avoid contact with these materials.
2. Hoods, glove boxes or other essential engineering controls should be known to be operating at required efficiency before work with EMBRYO TOXINS is started.
3. Store these substances, properly labeled, in an adequately ventilated area in a secondary container.
4. Notify supervisor of all incidents of exposure or spills.
5. Disposable protective clothing should be worn when working with these substances.
6. Conduct all work and transfers in the designated area.

20.0 OPERATIONS REQUIRING PRIOR APPROVAL

1. Lab personnel must obtain prior approval from the Institutional Biosafety Committee before commencing operations involving recombinant DNA. This is to assure that safeguards are in place and that personnel are adequately trained.
2. Prior approval must be obtained from the Institutional Animal Care and Use committee before purchasing animals. Contact the Director of Research Compliance, Graduate School Research Division.
3. Prior approval is required when procuring radioactive materials and select carcinogens (See Section 6.1).
4. Lab personnel must obtain prior approval from the Institutional Biosafety Committee before commencing operations involving extremely toxic, environmentally harmful or reactive materials, including but not limited to PCBs, TNT, RDX, HMX, Dioxin, and Silane and Select agents.

21.0 WASTE DISPOSAL PROCEDURES

21.1 BROKEN GLASS

Broken beakers, pipettes, etc., should be promptly swept up and disposed of in containers marked "GLASS".

21.2 INFECTIOUS WASTE
Infectious waste disposal procedures are outlined in "Guidelines for the Collection, Handling and Disposal of Infectious Waste.

21.3 RADIOACTIVE WASTE

Radioactive waste storage and disposal procedures are outlined in the Radiation Safety Manual.

21.4 CHEMICAL WASTE

Each person working in the laboratory has a responsibility to see that all wastes are disposed of properly. Thorough chemical waste procedures are found in Appendix 10.

21.5 USED FLUORESCENT LIGHT BULBS

Fluorescent light bulbs cannot go into the regular trash. They must be boxed. The box must be taped shut and labeled: USED LAMPS CONTAINING MERCURY. Building Services will pickup the boxes for recycling.

22.0 REFERENCES

10. University of Notre Dame Respiratory Protection Program.
<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>KEEP OUT OF CONTACT WITH:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic Acid</td>
<td>Chromic Acid, nitric acid, hydroxyl compounds, ethylene glycol, perchloric acid, peroxides, permanganates.</td>
</tr>
<tr>
<td>Ammonium Nitrate</td>
<td>Acids, metal powders, flammable liquids, chlorates, nitrates, sulfur, powdered organic or combustible materials.</td>
</tr>
<tr>
<td>Bromine</td>
<td>Ammonia, acetylene, butadiene, butane, methane, propane, petroleum gases, hydrogen, sodium carbide, turpentine, benzene, powdered metals.</td>
</tr>
<tr>
<td>Chlorates</td>
<td>Ammonium salts, acids, metal powders, sulfur, finely divided organic or combustible materials.</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Ammonia, acetylene, butadiene, butane, methane, propane, petroleum, gases, hydrogen, sodium carbide, turpentine, benzene, powdered metals.</td>
</tr>
<tr>
<td>Flammable Liquids</td>
<td>Ammonium nitrate, chromic acid, hydrogen peroxide, nitric acid, sodium peroxide, all of the halogens.</td>
</tr>
<tr>
<td>Hydrocarbons: (Butane, Propane, Benzene, gasoline, turpentine, etc.)</td>
<td>Chlorine, bromine.</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>Copper, chromium, iron, most metals or their salts, alcohols, acetone, organic materials, aniline, nitromethane, flammable liquids, combustible materials.</td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>Fuming nitric acid, oxidizing gases.</td>
</tr>
<tr>
<td>Iodine</td>
<td>Acetylene, ammonia (aqueous or anhydrous), hydrogen.</td>
</tr>
<tr>
<td>Nitric Acid (conc.)</td>
<td>Acetic acid, aniline, chromic acid, hydrocyanic acid, hydrogen sulfide, flammable liquids or gases.</td>
</tr>
<tr>
<td>Sulfuric Acid (conc.)</td>
<td>Potassium chlorate, potassium perchlorate, potassium permanganate (or compounds with similar light metals, such as sodium or lithium), acetone.</td>
</tr>
</tbody>
</table>
APPENDIX 2

INHERENT PROPERTIES
Examples of Chemicals which may preclude long term storage

<table>
<thead>
<tr>
<th>Property</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deliquescent</td>
<td>Acid chlorides, acetamide, ammonium and potassium acetate, aluminum chloride, cupric chloride</td>
</tr>
<tr>
<td></td>
<td>Hygroscopic Ammonium bromide, cyclohexanol, ethylene glycol, ferric chloride and nitrate, perchloric acid</td>
</tr>
<tr>
<td>Absorb CO₂</td>
<td>Barium hydroxide, ethylene diamine, lead acetate, lithium hydroxide</td>
</tr>
<tr>
<td>Auto oxidation</td>
<td>Benzaldehyde</td>
</tr>
<tr>
<td>Light Sensitive</td>
<td>Styrene, mercury oxide, chloroform</td>
</tr>
<tr>
<td>Corrosive Fumes</td>
<td>Bromine, hydrochloric acid</td>
</tr>
<tr>
<td>Decomposition</td>
<td>Calcium hypochlorite, Hydrogen peroxide</td>
</tr>
<tr>
<td>Efflorescent</td>
<td>Ferric ammonium sulfate, chromic potassium sulfate, citric acid, copper sulfate</td>
</tr>
<tr>
<td>Extremely volatile</td>
<td>Collodion</td>
</tr>
<tr>
<td>Sublimes</td>
<td>p-dichlorobenzene, iodine</td>
</tr>
<tr>
<td>Peroxidizes</td>
<td>1, 4-dioxane, isopropyl and ethyl ether, cyclohexene, tetrahydrofuran</td>
</tr>
<tr>
<td>Dry out</td>
<td>Picric acid, benzoyl peroxide</td>
</tr>
</tbody>
</table>

GENERAL REFERENCES

1. Journal of Chemical Education, continuing series on “Safety in the Chemical Laboratory” and “Safety Tips”.

APPENDIX 3 CHEMICAL WASTE DISPOSAL

1.0 HAZARDOUS WASTE DISPOSAL AT THE UNIVERSITY OF NOTRE DAME

HOW IT WORKS: HAZARDOUS WASTE MANAGEMENT

The several hundred kilograms of hazardous wastes generated at the University each month present a serious and complex problem for the University. Unless you understand that chemical wastes are your problem and responsibility, our teaching and research efforts may be compromised. The key to solving this problem lies in recognizing your responsibility, understanding our management system, and reducing the volume of surplus chemicals.

1. Your Problems and Responsibilities

Surplus chemicals are your problem. When hazardous chemicals are mismanaged, they have the potential to pollute the environment and threaten human health. Whether your surplus chemicals are generated inorganic synthesis or in creating ceramics, understanding your responsibility for those wastes or unwanted chemicals is the most important first step in sound hazardous waste management.

2. Our Management System

The success of the management system depends on cooperation between you and the Risk Management & Safety Department staff. You should use this Disposal Guide to identify hazardous wastes and determine their appropriate route of disposal. There are three routes of disposal for your surplus chemicals.

a. Disposal (of certain materials) to the normal trash or sanitary sewer system.
b. Chemical treatment (such as neutralization), followed by disposal to the sanitary sewer system.
c. Risk Management & Safety (RM&S) Department pickup for recycling, incineration, or land filling.

Please note that the campus pathological incinerator is not to be used for the disposal of chemicals. Pathological incinerators are designed and licensed only for the incineration of pathological waste and not for chemical waste.

When your surplus chemicals are given to RM&S, we first determine whether the chemical is a waste or can be redistributed. If the chemical is waste, we then determine the degree of hazard and the appropriate route of disposal.

5. National Fire Prevention Association, National Fire Codes - 30, 45, 325M, 49, 491M.
Waste solvent are commingled in 55 gallon drums and incinerated commercially in an EPA licensed incinerator. Potential explosives are detonated and burned by a commercial facility. Non-hazardous wastes are disposed of in the sanitary sewer or a local sanitary landfill. Finally, the remainder is packaged into 55 gallon drums and sent to an EPA approved hazardous waste landfill, or incinerated.

Throughout this process, the University is required to keep records that account for hazardous wastes “from the cradle to the grave”.

3. Your Job in Waste Reduction

The Resource Conservation and Recovery Act of 1976 makes it illegal to improperly manage hazardous wastes. The Act and its subsequent regulations provide for a maximum $25,000 fine for each day of violation and criminal penalties for willful and fraudulent violations. The Act’s emphasis is on waste reduction and recycling. Of the disposal methods listed in the previous section, a hazardous waste landfill is clearly the least desirable. Hazardous waste landfills are costly, use our land resources and should be used only as a method of last resort when other disposal methods are not available. We have designed our management system around waste reduction methods. It makes sense because the handling, treatment and disposal of surplus chemicals is expensive.

You can help ease the problem of chemical waste disposal. Please:

a. Order Only What You Need
 Don’t buy a kilogram of material when you plan to use only a few grams. The savings made by an economy size purchase, may be used up and exceeded in the disposal costs of the excess. Be sure to check your current stock before ordering chemicals. It may also be possible to borrow small amounts of chemicals from other labs. Please take the time to check.

b. Substitute Non-Hazardous Or Less Hazardous Materials For Hazardous Ones
 For example, there are many nonhazardous substitutes for chromic acids. Also, dichloromethane is less toxic than carbon tetrachloride or chloroform and can be substituted satisfactorily in most cases.

c. Dispose of Nonhazardous Materials Yourself
 Chemicals that can safely be disposed of in the normal trash or in the sanitary sewer system should not be given to RM&S or mixed with hazardous chemicals.

d. Use Recycled Chemicals Whenever Possible
 We have an ongoing program of redistributing your usable but unwanted chemicals. The RM&S Department has established criteria for deciding which chemicals are suitable for recycling. All recycled chemicals are in their original
container and may still have their factory seals. Periodically, RM&S distributes a list of recyclable chemicals in the Department newsletter, *FlashPoint*.

f. Treat Chemicals In Your Laboratory

When you order a chemical, you have the responsibility for its disposal. Don’t give RM&S a chemical you can treat in your lab. Acids and bases should be neutralized and put into the sewer system. Procedures are given in this guide. Other treatments that you can carry out in your lab are metal precipitations and safe reductions of strong oxidizers. Please call RM&S for procedures for carrying out these and other chemical treatments.

g. Date Opening

Many chemicals have limited shelf life. After which they decompose, give off fumes, absorb water or CO2, or form peroxides. Watching the storage time can minimize disposal of “reactive” materials by disposing of them when they are stable. See below for a chart of chemicals not designed for long term storage.

1.1 What is Hazardous?

This section will help you identify hazardous chemicals. The Indiana Department of Environmental Management (IDEM) and the U.S. Environmental Protection Agency (EPA) considers chemical waste hazardous if it:

- exhibits certain hazardous characteristics (See 1.2.1, below), or
- is a listed hazardous chemical (Section 1.2.2, below).

Some chemicals are included in both Sections 1.2.1 and 1.2.2, because they fit the criteria of each section. Chemicals that you can dispose of in the normal trash or the sewer system, are listed in Sections 1.3 and 1.4. If a chemical isn’t in these sections or you’d like more information, call RM&S.

1.1.1 Hazardous Characteristics

Chemicals which have the following four characteristics are considered to be hazardous by the EPA:

a. **IGNITABILITY**

 A liquid which has a flash point of less than 60 deg C is considered ignitable by the EPA. This includes almost all organic solvents. Some examples are:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Chemical</th>
<th>Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl ether</td>
<td>Methanol</td>
<td>Ethanol</td>
</tr>
<tr>
<td>Acetone</td>
<td>Toluene</td>
<td>Benzene</td>
</tr>
<tr>
<td>Pentane</td>
<td>Hexane</td>
<td>Skelly B</td>
</tr>
<tr>
<td>Xylene</td>
<td>Formaldehyde</td>
<td>Heptane</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>Petroleum Ether</td>
<td></td>
</tr>
</tbody>
</table>
Instructions for the disposal of organic solvents are given in Section 1.6.

b. CORROSIVITY

An aqueous solution having a pH of less than or equal to 2, or greater than or equal to 12.5 is considered corrosive by the EPA. Instructions for the disposal of concentrated solutions of acids or bases are given in Section 1.5. Corrosive materials also include thionyl chloride, solid, sodium hydroxide and other nonaqueous acids or bases.

c. REACTIVITY

Chemicals that react violently with air or water are considered reactive by the EPA. An example is sodium metal. Reactive materials also include strong oxidizers, such as perchloric acids, and chemicals capable of detonation when subjected to an initiating source, such as old picric acid and phosphorous.

Solutions of cyanide or sulfide that could generate toxic gases are also classified as a reactive by EPA.

d. TCLP TOXICITY

TCLP is a laboratory test to determine leaching. Chemicals characterized as toxic by the EPA may leach into the groundwater if improperly managed. EPA toxic wastes include concentrated toxic metal solutions and the following list of pesticides:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>2,4-D</th>
<th>2,4,5-TP Silvex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lindane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>Toxaphene</td>
<td></td>
</tr>
</tbody>
</table>

Any chemical with an LD50 less than 500 mg/kg or is a carcinogen, mutagen or teratogen eg. Furadan Oral LD50 (human) 11 mg/kg or Osium tetraoxide Oral LD50 (rat) 14 mg/kg.

1.1.3 Other Hazardous Wastes

1. Aqueous Solutions of Toxic Metals

a. Disposal in General

The concentrations of the following toxic metals are regulated for disposal to the sanitary sewer.

<table>
<thead>
<tr>
<th>Metal</th>
<th>Chromium</th>
<th>Selenium</th>
<th>Silver</th>
<th>Zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>Copper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>Lead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>Mercury</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You can treat concentrated aqueous solutions of these metals to precipitate the
metal and then filter prior to discharge to the sewer system. Call us if you want advice on the procedure.

b. Special Precautions for Lead, Mercury and Silver

Lead, mercury and silver require special precautions for disposal. If you discharge any of these metals, their compounds or aqueous solutions of their compounds into the sewer system, make sure you meet these concentrations.

- Lead: 2.0 mg/l
- Mercury: 0.02 mg/l
- Silver: 0.4 mg/l

Lead, mercury and silver are especially important pollutants. Filtering, precipitation for some other type of collection must be routine procedure for your lab if you use them. Even when silver recovery units are being employed, we’ve found several instances of high discharges resulting from poor maintenance. For treatment procedures, testing or more information, please call us. RM&S will collect solutions and/or filtrated solids for disposal.

2. Solutions of Nonmetallic Pesticides

You should put solutions of nonmetallic pesticides in plastic or glass bottles for pickup by RM&S.

3. Free-Flowing Metallic Mercury

Package free-flowing mercury (broken thermometers, mercury from manometers, etc in tightly sealed containers. Label with a chemical discard tag and call RM&S for pickup.

4. Solutions of Cyanide or Sulfide

Solutions containing cyanide or sulfide compounds release toxic gases under acidic conditions. For safety, you should package these solutions separately from acids and give them to us.

1.2.2 Hazardous Chemicals

This section presents a list of chemicals which the EPA considered hazardous because of their carcinogenicity, mutagenicity, teratogenicity, or other toxicity. The list, which will be updated to keep up with current scientific information, is not meant to be complete and generally does not include substances which have hazardous characteristics, as defined previously. The omission of a chemical from this list does not mean it is not toxic or otherwise hazardous. Call RM&S if you want additional hazard information.

Disposal instructions for these chemicals are given in Sections depending on their
classification and physical form.

EPA HAZARDOUS CHEMICALS LIST

Auramine
Azaserine (L-Serine, diazoacetate (ester))
Aziridine
Azirinopyrrola indole-4,7-dione
Barium and compounds, N.O.S.* Flammable solid & oxidizer ORMB
Barium Cyanide - Poison B
Benz(c) acridine (3,4-Benzacridine)
Benzenamine, 4-chloro-2-methyl-
Benz(a)anthracene (1,2-Benzanthracene)
Benzene (Cyclohexatriene) (Benzol)
Benzenearsonic acid (Arsenic acid, phenyl-)
Benzenes, dichloromethyl-(Benzal chloride)
Benzenes, hexahydro- Flammable liquid
Benzene, (1-methylethyl) - Flammable liquid
Benzenesulfonic acid chloride (Benzenesulfonyl chloride)
Benzenethiol (Thiophenol)
Benzidine ((1,1'-Biphenyl)-4,4'diamine) -Poison B
Benzo (b) fluoranthene (2,3-Benzofluoranthene)
Benzo (j) fluoranthene (7,8-Benzofluoranthene)
Benzo (a) pyrene (3,4-Benzpyrene)
p-Benzoquinone (1,4-Cyclohexadienedione)
Benzotrichloride (Benzene, trichloromethyl-)
Bromomethane (Methyl bromide)-Toxic
Bromoacetone (2-Propanone, 1-bromo-)-Poison A
Bromomethane (Methyl bromide)-Toxic
4-Bromophenyl phenyl ether (Benzene, 1-bromo-4-phenoxy-)
Brucine (Strychnidin-10-one, 2,3-dimethoxy-)-Poison B
1-Butanol (n-Butyl alcohol)
2-Butanone peroxide (Methyl ethyl ketone peroxide)-Toxic
Butyl benzyl phthalate (1,2-Benzenedicarboxylic acid, butyl phenylmethyl ester)
2-sec-Butyl-4,5-dinitrophenol (DNBP) (Phenol, 2,4-dinitro-6-(1-methylpropyl)-)
DDE (Ethylene, 1,1-dichloro-2,2-bis (4-chlorophenyl)-)
DTD (Dichlorodiphenyltrichloroethane)-ORMA
Diallate (S-2,3-Dichloroallyl)disopropylthiocarbamate
Dibenz (a,H) acridine (1,2,5,6-Dibenzacridine)
Dibenz (a,j) acridine (1,2,7,8-Dibenzanthracene)
7H-Dibenz (c,g) carbazole (3,4,5,6-Dibenazarbazole)
Dibenzo (a,e) pyrene (1,2,4,5-Dibenzpyrene)
*Not Otherwise Specified; includes related species

EPA HAZARDOUS CHEMICALS LIST (CONTINUED)

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibenzo (a,h) pyrene (1,2,5,6-Dibenzpyrene)</td>
<td></td>
</tr>
<tr>
<td>Dibenzo (a,i) pyrene (1,2,7,8-Dibenzpyrene)</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane (Ethylene dibromide)</td>
<td></td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td></td>
</tr>
<tr>
<td>Di-n-butyl phthalate (1,2-Benzenedicarboxylic acid, dibutyl ester)</td>
<td></td>
</tr>
<tr>
<td>α-Dichlorobenzene (Benzene, 1,2-dichloro-)</td>
<td></td>
</tr>
<tr>
<td>m-Dichlorobenzene (Benzene, 1,3-dichloro-)</td>
<td></td>
</tr>
<tr>
<td>p-Dichlorobenzene (Benzene, 1,4-dichloro-) ORM-A</td>
<td></td>
</tr>
<tr>
<td>Dichlorobenzene, N.O.S.* ORM-A</td>
<td></td>
</tr>
<tr>
<td>3,3′-Dichlorobenzidine</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichloro-2-butene Flammable liquid, corrosive material</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane (Ethylidene dichloride) Toxic</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane (Ethylene dichloride) Toxic</td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene (1,2-Dichloroethylene)</td>
<td></td>
</tr>
<tr>
<td>Dichloroethylene, N.O.S.* (Ethene, dichloro-, N.O.S.*)</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene (Ethene, 1,1-dichloro-)</td>
<td></td>
</tr>
<tr>
<td>Dichloroethyl ether</td>
<td></td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)-ORM A</td>
<td></td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorophenol</td>
<td></td>
</tr>
<tr>
<td>2,4-Dichlorophenoxyacetic acid (2,4-D), salts and esters</td>
<td></td>
</tr>
<tr>
<td>Dichlorophenylarsine (Phenyl dichloroarsine)</td>
<td></td>
</tr>
<tr>
<td>Dichloropropane, N.O.S.*</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane (propylene dichloride)</td>
<td></td>
</tr>
<tr>
<td>Dichloropropanol, N.O.S.*</td>
<td></td>
</tr>
<tr>
<td>Dichloropropene, N.O.S.*</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td></td>
</tr>
<tr>
<td>Dieldrin - ORM A</td>
<td></td>
</tr>
<tr>
<td>Diethylarsine</td>
<td></td>
</tr>
<tr>
<td>N,N-Diethylhydrazine (Hyrazine,1,2-diethyl)</td>
<td></td>
</tr>
<tr>
<td>O,O-Diethyl S-methyl ester of phosphorodithioic acid</td>
<td></td>
</tr>
<tr>
<td>O,O-Diethylphosphoric acid, O-p-nitrophenyl ester (Phosphoric acid, diethyl</td>
<td></td>
</tr>
<tr>
<td>p-nitrophenyl ester)</td>
<td></td>
</tr>
<tr>
<td>Diethyl phthalate (1,2-Benzenedicarboxylic acid, diethyl ester)</td>
<td></td>
</tr>
<tr>
<td>O,O-Diethyl-O-2-pyrazinyl phosphorothioate (phosphorothioic acid, O,O-diethyl-O-pyrazinyl ester)</td>
<td></td>
</tr>
<tr>
<td>Diethylstilbestrol</td>
<td></td>
</tr>
<tr>
<td>Dihydrosafrole (Benzene, 1,2-methylenedioxy-4-propyl-)</td>
<td></td>
</tr>
<tr>
<td>Diisoproplyphosphofluorophosphate (DFP)</td>
<td></td>
</tr>
<tr>
<td>Dimethoate</td>
<td></td>
</tr>
<tr>
<td>3,3′-Dimethoxybenzidine</td>
<td></td>
</tr>
<tr>
<td>Dimethylamine (N-Methylmethanamine)</td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylaniline</td>
<td></td>
</tr>
<tr>
<td>7,12-Dimethylbenz(a)anthracene (1,2-Benzanthracene, 7,12-dimethyl-)</td>
<td></td>
</tr>
<tr>
<td>3,3′-Dimethylbenzidine (α-Tolidine)</td>
<td></td>
</tr>
</tbody>
</table>
EPA HAZARDOUS CHEMICALS LIST (CONTINUED)

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>CAS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha, alpha-Dimethylbenzylhydroperoxide</td>
<td></td>
</tr>
<tr>
<td>Dimethylcarbamoyl chloride</td>
<td></td>
</tr>
<tr>
<td>1,1-Dimethylhydrazine</td>
<td></td>
</tr>
<tr>
<td>1,2-Dimethylhydrazine</td>
<td></td>
</tr>
<tr>
<td>alpha, alpha-Dimethylphenethylamine (Ethanamine, 1,1-dimethyl-2-phenyl)</td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td></td>
</tr>
<tr>
<td>Dimethyl phthalate (1,2-Benzenedicarboxylic acid, dimethyl ester)</td>
<td></td>
</tr>
<tr>
<td>Dimethyl sulfate (Sulfuric acid, dimethyl ester)</td>
<td></td>
</tr>
<tr>
<td>Dinitrobenzene, N.O.S.*</td>
<td></td>
</tr>
<tr>
<td>4,6-Dinitro-o-cresol and salts (Phenol, 2,4-dinitro-6-methyl-, and salts)</td>
<td></td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td></td>
</tr>
<tr>
<td>2,4-Dinitrotoluene (Benzene, 1-methyl-2,4-dinitro-)</td>
<td></td>
</tr>
<tr>
<td>2,6-Dinitrotoluene (Benzene, 1-methyl-2,6-dinitro-)</td>
<td></td>
</tr>
<tr>
<td>Di-n-octyl phthalate (1,2-Benzenedicarboxylic acid, dioctyl ester)</td>
<td></td>
</tr>
<tr>
<td>1,4-Dioxane (1,4-Diethylene oxide)</td>
<td></td>
</tr>
<tr>
<td>Diphenylamine (Benzonine, N-phenyl-)</td>
<td></td>
</tr>
<tr>
<td>1,2-Diphenylhydrazine</td>
<td></td>
</tr>
<tr>
<td>Dipropylamine</td>
<td></td>
</tr>
<tr>
<td>Di-n-proplylnitrosamine (N-Nitroso-di-n-propylamine)</td>
<td></td>
</tr>
<tr>
<td>Disulfoton</td>
<td></td>
</tr>
<tr>
<td>2,4-Dithiobiuret (Thiomidodicarbonic diamide)</td>
<td></td>
</tr>
<tr>
<td>Endosulfan</td>
<td></td>
</tr>
<tr>
<td>Endothall</td>
<td></td>
</tr>
<tr>
<td>Endrin nd metabolites</td>
<td></td>
</tr>
<tr>
<td>Epineprine</td>
<td></td>
</tr>
<tr>
<td>Ethane, 1,1'-oxybis- (Ethyl Ether)</td>
<td></td>
</tr>
<tr>
<td>Ethidium bromide</td>
<td></td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td></td>
</tr>
<tr>
<td>Ethyl acrylate</td>
<td></td>
</tr>
<tr>
<td>Ethyl carbamate (Urethan) (Carbamic acid, ethyl ester)</td>
<td></td>
</tr>
<tr>
<td>Ethyl cyanide (Propanenitrile)</td>
<td></td>
</tr>
<tr>
<td>Ethylenebisdithiocarbamic acid, salts and esters</td>
<td></td>
</tr>
<tr>
<td>Ethyleneimine (Aziridine)</td>
<td></td>
</tr>
<tr>
<td>Ethylene oxide (Oxirane)</td>
<td></td>
</tr>
<tr>
<td>Ethylenethiourea (2-Imidazolidinethione)</td>
<td></td>
</tr>
<tr>
<td>Ethyl methacrylate (2-Propenoic acid, 2-methyl-, ethyl ester)</td>
<td></td>
</tr>
<tr>
<td>Ethyl methanesulfonate (Methanesulfonic acid, ethyl ester)</td>
<td></td>
</tr>
<tr>
<td>Famphur (Famophos)</td>
<td></td>
</tr>
<tr>
<td>Fluoranthenic (Benzol (j,k) fluorene)</td>
<td></td>
</tr>
<tr>
<td>Flourine</td>
<td></td>
</tr>
<tr>
<td>2-Fluoroacetamide</td>
<td></td>
</tr>
<tr>
<td>Fluoroacetic acid, sodium salt</td>
<td></td>
</tr>
<tr>
<td>Formic acid (Methylene oxide)</td>
<td></td>
</tr>
<tr>
<td>Formic acid (Methanoic acid)</td>
<td></td>
</tr>
<tr>
<td>Furan (Furfuran)</td>
<td></td>
</tr>
<tr>
<td>2-Furfuralcarboxaldehyde (Furfural)</td>
<td></td>
</tr>
</tbody>
</table>
Furan, tetrahydro-
Glycidaldehyde (1-Propanol, 2,3,-epoxy)
Hamolethane, N.O.S.*
Heptachlor
Heptachlor epoxide (alpha, beta, and gamma isomers)
Hexachlorobenzene
Hexachlorobutadiene (1,3-Butadiene, 1,1,2,3,4,4-Hexachloro-)
Hexachlorocyclopentadiene (1,3-cyclopentadiene, 1,2,3,4,5,5-hexachloro-)
Hexachloroethane (Ethane, 1,1,1,2,2,2-hexachloro-)
Hexachlorophene (2,2′-Methylene (3,4,6-trichlorophenol))
Hexachloropropene (1-Propene, 1,1,2,3,3,3-hexachloro-)
Hexaethyl tetraphosphate (Tetraphosphoric acid, hexaethyl ester)
Hydrazine (Diamine)
Hydrofluoric acid (Hydrogen fluoride)
Hydrogen cyanide (Hydrocyanic acid)
Hydrogen sulfide (Sulfur hydride)
Hydroperoxide, 1-methyl-1-phenylethyl
Hydroxymethylarsine oxide (Cacodylic acid)
Ineno (1,2,3-cd) pyrene (1,10- (1,2-phenylene) pyrene)
Indomethacin
Iodomethane (Methyl iodid)
Iron Dextran (Ferri dextran)
Isocyanic acid, methyl ester (Methyl isocyante)
Isobutyl alcohol (1-Propanol, 2-methyl-)
Isosafrole Benzene, 1,2-methylenedioxy-4-allyl-
Keptone (Chlordecone)
Lasiocarpine
Lead and compounds, N.O.S.*
Lead acetate (Acetic acid, lead salt)
Lead subacetate (Lead, bis (acetato-O) tetrahydroxyti-)
Lindane (all isomers)
Maleic anhydride (2,5-Furandione)
Maleic hydrazide (1,2-Dihydro-3,6-pyridazinedione)
Malononitrile (Propanenitrile)
Melphalan (Alanine, 3-(p-bis(2-chloroethyl) amino) phenyl-, L)
Mercury fulminate (Fulminic acid, mercury salt)
Mercury and compounds, N.O.S.*
Methacrylonitrile (2-Propenenitrile, 2-methyl-)
Methanamine, N-methyl
Methanethiol (Thiomethanol)
Methanol
Methapyrilene (Pyridien, 2-((2-dimethylamino)ethyl)-2-thenylamino-)
Metholmyl
Methoxychlor (Ethane, 1,1,1-trichloro-2,2-bis(p-methoxyphenyl)-)
2-Methylaziridine (1,2-Propylenimine)
<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>CAS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Methylbutadiene</td>
<td></td>
</tr>
<tr>
<td>Methyl chlorocarbonate (Carbonochloridic acid, methyl ester)</td>
<td></td>
</tr>
<tr>
<td>3-Methylolanthrene (Benz(j)aceanthrylene, 1,2-dihydro-3-methyl-)</td>
<td></td>
</tr>
<tr>
<td>4,4'-Methylenebis(2-chloroaniline) (Benzeneamine, 4,4'-methylenebis- (2-chloro-)</td>
<td></td>
</tr>
<tr>
<td>Methylenechloroform (MEK) (2-Butanone)</td>
<td></td>
</tr>
<tr>
<td>Methyl hydrazine</td>
<td></td>
</tr>
<tr>
<td>2-Methylactonitrile (Propanenitrile, 2-hydroxy-2-methyl-)</td>
<td></td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td></td>
</tr>
<tr>
<td>Methyl methacrylate (2-Propenoic acid, 2-methyl-,methyl ester)</td>
<td></td>
</tr>
<tr>
<td>Methyl methanesulfonate (Methanesulfonic acid, methyl ester)</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-2-(methylthio)propionaldehyde-o-(methylcarbonyl)oxime (Propanal,</td>
<td></td>
</tr>
<tr>
<td>2-methyl-2-(methylthio)-o-((methylaminocarbonyl)oxime)</td>
<td></td>
</tr>
<tr>
<td>N-Methyl-N’-nitro-N’-nitrosoguanidine</td>
<td></td>
</tr>
<tr>
<td>Methyl parathion</td>
<td></td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td></td>
</tr>
<tr>
<td>Methylulthiouracil</td>
<td></td>
</tr>
<tr>
<td>Mitomycin-C</td>
<td></td>
</tr>
<tr>
<td>Mustard gas (Sulfide, bis(2-chloroethyl)-)</td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td></td>
</tr>
<tr>
<td>1,4-Naphthoquinone (1,4-Naphthalenedione)</td>
<td></td>
</tr>
<tr>
<td>1-Naphthylamine (alpha-Naphthylamine)</td>
<td></td>
</tr>
<tr>
<td>2-Naphthylamine (beta-Naphthylamine)</td>
<td></td>
</tr>
<tr>
<td>1-(1-Naphthyl)-2-thiourea (Thiourea, 1-naphthalenyl-)</td>
<td></td>
</tr>
<tr>
<td>Nickel and compounds, N.O.S.*</td>
<td></td>
</tr>
<tr>
<td>Nickel carbonyl (Nickel tetracarbonyl)</td>
<td></td>
</tr>
<tr>
<td>Nickel cyanide (Nickel (II) cyanide)</td>
<td></td>
</tr>
<tr>
<td>Nicotine and salts</td>
<td></td>
</tr>
<tr>
<td>Nitric oxide (Nitrogen (II) oxide)</td>
<td></td>
</tr>
<tr>
<td>p-Nitroaniline (Benzenamine, 4-nitro-)</td>
<td></td>
</tr>
<tr>
<td>Nitrogen dioxide (Nitrogen (IV) oxide)</td>
<td></td>
</tr>
<tr>
<td>Nitrogen mustard and hydrochloride salt (Ethanamine, 2-chloro-,N-(2-chloroethyl)-N-methyl-, and hydrochloride salt)</td>
<td></td>
</tr>
<tr>
<td>Nitrogen mustard N-Oxide and hydrochloride salt (Ethanamine, 2-chloro-,N-(2-chloroethyl)-N-methyl-, and hydrochloride salt)</td>
<td></td>
</tr>
<tr>
<td>Nitroglycerine (1,2,3-Propanetriol, trinitrate)</td>
<td></td>
</tr>
<tr>
<td>p-Nitrophenol (4-Nitrophenol) (Phenol, 4-nitro-)</td>
<td></td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td></td>
</tr>
<tr>
<td>2-Nitropropane</td>
<td></td>
</tr>
<tr>
<td>4-Nitroquinoline-1-oxide (quinoline, 4-nitro-1-oxide-)</td>
<td></td>
</tr>
<tr>
<td>Nitrosamine, N.O.S.*</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosodi-n-butylamine (1-Buranamine, N-butyl-N-nitroso-)</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosodiethyanolamine (Ethanol, 2,2'-nitrosoimino)bis-)</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosodiethylamine (Ethanamine, N-ethyl-n-nitroso-)</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosodimethylamine (Diethylnitrosamine)</td>
<td></td>
</tr>
<tr>
<td>N-Nitroso-N-ethyleurea (Carbamide, N-ethyl-N-nitroso-)</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosomethylthyleureine (Ethanamine, N-methyl-N-nitroso-)</td>
<td></td>
</tr>
<tr>
<td>N-Nitroso-N-methylurea (Carbamide, N-methyl-N-nitroso-)</td>
<td></td>
</tr>
</tbody>
</table>
N-Nitroso-N-methylurethane (Carbamic acid, methyl nitroso-, ethyl ester)
N-Nitrosomethylvinylamine (ethenamine, N-methyl-N-nitroso-)
N-Nitrosomorpholine (Morpholine, N-nitroso-)
N-Nitrosornornicotine (Nornicotine, N-nitroso-)
N-Nitrosopiperidine (Pyridien, hexahydro-, N-nitroso-)
Nitrosopyrrolidine (Pyrrole, tetrahydro-, N-nitroso-)
N-Nitrososarcosine
5-Nitro-o-toluidine (Benzenamine, 2-methyl-5-nitro-)
Octamethylpyrophosphoramide (Diphosphoramide, octamethyl-)
Osmium tetroxide
Paraldehyde
Parathion
Pentachlorobenzene
Pentachloroethane
Pentachloronitrobenzene (PCNB)
Pentachlorophenol
1,3-Pentadiene
Phenacetine (Acetamide, N-(4-ethoxyphenyl-)
Phenol, (Carbolic acid)
Phenol, 2,4-dinitro-
Phenol, 2,4,6-trinitro-, ammonium salt
Phenylenediamine (Benenediamine)
Phenylmercury acetate (Mercury, (acetato)phenyl-)
N-Phenylthiourea
Phorate
Phosgene (Carbonyl chloride)
Phosphine (Hydrogen phosphine)
Phosphoruse sulfide
Phthalic acid esters, N.O.S.* (Benzene, 1,2-dicarboxylic acid, esters, N.O.S.*
Phthalic acidhydride (1,2-Benzenedicarboxylic acid anhydride)
2-Picoline (Pyridien, 2-methyl-)
Polychlorinated biphenyl, N.O.S*
Potassium cyanide
Potassium silver cyanide (Argentate (1-), potassium dicyano-)
Pronamide (3,5-Dichloro-N-(1,1-dimethyl-2-propynyl)benzamide)
Propane, 2-nitro-
1,3-Propane sultone (1,2-Oxathiolane, 2,2-dioxide)
2-Propanoic acid, ethyl ester
n-Propylamine (1-Propanamine)
Propyltiouracil
2-Propyn-1-ol (Propargyl alcohol)
Pyridine and salts
Reserpine
Resorcinol (1,2-Benzenediol)
Saccharin and salts
Safrole (Benzene, 4-allyl-1,2-methylenedioxy)
Selenious acid (Selenium dioxide)
Selenium and compounds, N.O.S.*
*Not Otherwise Specified; includes related species

EPA HAZARDOUS CHEMICALS LIST (CONTINUED)

Selenium sulfide (Sulfur selenide)
Selenourea (Caramimidoselenoic acid)
Silver cyanide
Sodium azide
Sodium cyanide
Streptozotocin (D-Glucopyranose, 2-deoxy-2-(3-methyl-3-nitrosoureido)-)
Strontium sulfide
Strychnine and salts (strychnidin-10-one, and salts)
Sulfur phosphide
1,2,4,5-Tetrachlorobenzene
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)
Tetrachloroethane, N.O.S.*
1,1,1,2- Tetrachlorethane
1,1,2,2-Tetrachlotoethane
Tetrachloroethylene (Ethene, 1,1,2,2-tetrachloro-)
Tetrachloromethane (Carbon tetrachloride)
2,3,4,6-Tetrachlorophenol
Tetrachyldithiopyrophosphatate (Dithiopyrophosphoric acid, tetraethylster)
Tetraethyl lead (Plumbane, tetraethyl-)
Tetraethylpyrophosphate (pyrophosphoric acid, tetraethyl ester)
Tetrahydrofuran
Tetranitromethane
Thallium and compounds, N.O.S.*
Thallic oxide (Thallium (III) oxide)
Thallium (I) acetate (Acetic acid, thallium (I) salt)
Thallium (I) carbonate (Carbonic acid dithallium (I) salt)
Thallium (I) chloride
Thallium (I) nitrate (Nitric acid, Thallium (I) salt)
Thallium selenite
Thallium (I) sulfate (Sulfuric acid, thallium (I) salt)
Thioacetamide (Ethanethioamide)
Thifanox
Thiosemicarbazide (Hydrazinecarbothioamide)
Thiourea (Carbamide, thio-)
Thiram (Bis(dimethylthiocarbamoyl)disulfide)
Toluene (Benzene, methyl-)
1,2,4-Trichlorobenzene
1,1,1-Trichloroethane (Methyl chloroform)
1,1,2-Trichloroethane
Trichloroethylene (Trichloroethylene)
Trichloromethanethiol
Trichloromonofluoromethane (Freon)
2,4,5-Trichlorophenol
*Not Otherwise Specified; includes related species

EPA HAZARDOUS CHEMICALS LIST (CONTINUED)

2,4,6-Trichlorophenol
2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)
2,4,5-Trichlorophenoxypropionic acid (2,4,5-TP) (Silvex)
Trichloropropane, N.O.S.*
1,2,3-Trichloropropane
O,O,O-Triethyl phosphorothioate (Phosphorothioic acid, O,O,O-triethyl ester)
sym-Trinitrobenzene (Benzene, 1,3,5-trinitro-)
Tris(1-azidinyl)phosphine sulfide
Tris(2,3-dibromopropyl) phosphate(1-Propanol, 2,3-dibromo-,phosphate)
Trypan blue
Uracil mustard (Uracil 5-(bis(2-chloroethyl)amino)-)
Vanadic acid, ammonium salt (Ammonium vanadate)
Vanadium pentoxide (Vanadium (V) oxide)
Vinyl chloride (Ethene, chloro-)
Warfarin
Xylene (Benzene, dimethyl)
Zinc Chloride
Zinc phosphide

*Not Otherwise Specified; includes related species
1.3 Chemicals For the Normal Trash

You can safely dispose of many solid chemicals in the normal trash if the containers are tightly capped and of good integrity. Examples are given on the following list. These chemicals were selected because they:

a. are sold by Chemistry Stores
b. have oral rat LD50 toxicity values higher than 500 mg/kg and
c. have no positive determination for carcinogenicity according to the National Institute of Occupational Safety and Health (NIOSH) 1979 Registry of Toxic Effects of Chemical Substances.

If you intend to dispose of more than five pounds of any one of these chemicals, call RM&S for further evaluation.

CHEMICAL FOR NORMAL TRASH

Acid, Ascorbic	Acid Benzoic
Acid, Boric	Acid Casamind
Acid, Citric	Acid, Lactic
Acid, Oleic	Acid, Phosphotungstic
Acid, Phthalic	Acid, Salicylic
Acid, Silicic	Acid, Stearic
Acid, Succinic	Agar
Acid, Tartaric	Aluminum Chloride
Albumen	Aluminum Metal
Aluminum Hydroxide	Ammonium Chloride
Ammonium Bicarbonate	Ammonium Sulfate
Ammonium Phosphate	Base, Blood Agar
Ammonium Sulphamate	Brain Heart Infusin
Beef Extract	Broth Nutrient
Brom Phenol Blue	Calcium Carbonate
Buffer Solution	Calcium Lactate
Calcium Chloride	Calcium Sulphate
Calcium Phosphate	Charcoal, Animal
Cerelose, Dextrose	Dextrose
Crystal Violet	Extract Malt
Drierite	Ferric Chloride
Extract Yeast	Ferric Sulphate
Ferric Nitrate	Galactose
Ferrous Ammonium Sulphate	Graphite
Gelatin
Gum, Arabic
Hematoxylin
Lactose
Lithium Chloride
Litmus Mild
Magnesium Chloride
Magnesium Oxide
Maltose
Manganese Chloride
Manganese Sulphate
Methyl Salicylate
Naphthalene
Paraffin
Peptone
Potassium Acetate
Potassium Bisulphate
Potassium Bromate
Potassium Carbonate
Potassium Iodide
Potassium Nitrate
Potassium Sodium Tartrate
Potassium Sulphite
Pumice
Sodium Acetate
Sodium Benzoate
Sodium Bisulphate
Sodium Borate
Sodium Carbonate
Sodium Chloride
Sodium Formate
Sodium Lactate
Sodium Salicylate
Sodium Succinate
Sodium Thioglycollate
Sucrose
Talcum Powder
Tin Metal

Gum, Guaic
Kaolin
Lithium Carbonate
Lithium Sulphate
Magnesium Carbonate
Magnesium Nitrate
Magnesium Sulphate
Magnesium Acetate
Manganese Dioxide
Methyl Red
Methylene Blue
Naphthalol Beta
Pepsin
Petroleum Jelly
Potassium Bicarbonate
Potassium Bitartrate
Potassium Bromide
Potassium Citrate
Potassium Phosphate
Potassium Sulphate
Potassium Sulphocyanate
SDS (Sodium Dodexyl Sulfate)
Sodium Ammonium Phosphate
Sodium Bicarbonate
Sodium Bisulphite
Sodium Bromide
Sodium Citrate
Sodium Iodide
Sodium Nitrte
Sodium Phosphate
Sodium Silicate
Sodium Tartrate
Sodium Thioulsphate
Stannous Chloride
Thymol
Trypticase
Tryptone
Wax, Bee’s
1.3 Chemicals For the Sanitary Sewer System

You can safely dispose of many chemicals into the sanitary sewer system if they are water soluble, degradable in the sanitary sewer and properly diluted. Examples are given in the following list. Chemicals in solid form should be followed by twenty (20) parts of water. If you intend to dispose of more than one pound of any one of these chemicals, call RM&S for further evaluation.

1. AQUEOUS SOLUTIONS OF CHEMICALS LISTED UNDER “CHEMICALS FOR THE NORMAL TRASH” (Section 1.3).

2. VERY DILUTE AQUEOUS SOLUTIONS OF WATER SOLUBLE ORGANIC SOLVENTS. (i.e., <10% solutions). Examples are:

 Allyl Alcohol Propanol
 Glycerine Propylene Glycol

3. CONCENTRATED SOLUTIONS OF ACIDS OR BASES

This section explains the disposal of concentrated solutions of acids, such as hydrochloric, sulfuric, and nitric and bases such as ammonium hydroxide. These solutions should be neutralized in the laboratory as described in Section 1.5 below. However, the RM&S will pick acids and bases up for disposal.

You should take special care when neutralizing strongly oxidizing acids such as perchloric acid and fresh chromic acid, so call us for additional instructions.

1.4 General Neutralization Procedures

CAUTION: FUMES AND HEAT ARE GENERATED

1. Do your neutralizations in a well-ventilated hood and behind a safety shield.
2. Keep containers cool while neutralizing.
3. You should be wearing an apron, goggles, and gloves.
4. Perform all steps SLOWLY.
5. Neutralize concentrated solutions of acids and bases to within a pH range of greater than 2 and lower than 12.5 and then flush them into the sanitary sewer with at least twenty (20) parts of water.
1.4.1 Acid Neutralization

While stirring, add acids to large amounts of an ice-water solution of base such as sodium carbonate (soda ash), calcium hydroxide (slaked lime), or 8M sodium hydroxide (for concentrated acids). When a pH above 2 is achieved, dispose of the solution into the sewer system followed by twenty (20) parts of water.

1.4.2 Base Neutralization

Neutralize by first adding the base to a large vessel containing water. Slowly add a 1M solution of HCL. When a pH of 12.5 is achieved, dispose of into the sewer system followed by twenty parts of water.

1.4.3 Chromic Acid

1. Alternatives to Chromic Acid Cleaning Solutions

Chromic acid is a powerful oxidizing agent. It is both toxic and corrosive and can explode on contact with organic materials. Users of chromic acid cleaning solutions on campus have suffered burns to both skin and clothing. We urge you to consider the alternatives listed on the next page that clean satisfactorily and are less toxic.

2. Disposal

You should neutralize spent chromic acid solution to pH 2 by SLOWLY pouring it into a stirred 8M NaOH-ice solution in a large container. CAUTION: Fumes and heat are green Cr (III) by the addition of a saturated sodium bisulfite solution. (Hexavalent chromium is highly oxidizing and toxic and is strictly regulated in waste). Put the neutralized, reduced solution into the sewer system, followed by twenty (20) parts of water.

SUGGESTED ALTERNATIVES TO CHROMIC ACID CLEANING SOLUTION

<table>
<thead>
<tr>
<th>Product</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Chromi</td>
<td>Godax Laboratories</td>
</tr>
<tr>
<td>RBS 35 Concentrate</td>
<td>Pierce Chemical Co.</td>
</tr>
<tr>
<td>RBS Solid</td>
<td>Pierce Chemical Co.</td>
</tr>
<tr>
<td>S/P Laboratory Detergent</td>
<td>American Scientific Products</td>
</tr>
<tr>
<td>S/P Contrad 70</td>
<td>American Scientific Products</td>
</tr>
<tr>
<td>Alconox</td>
<td>American Scientific Products</td>
</tr>
<tr>
<td>Fisherband Sparkleen</td>
<td>Fisher Scientific Co.</td>
</tr>
<tr>
<td>FL-70 Concentrate</td>
<td>Fisher Scientific Co.</td>
</tr>
<tr>
<td>Liquinox Liquid Detergent</td>
<td>Fisher Scientific Co.</td>
</tr>
<tr>
<td>Isoclean</td>
<td>Lab Safety Supply</td>
</tr>
<tr>
<td>Count-Off</td>
<td>New England Nuclear Co.</td>
</tr>
<tr>
<td>Lift Away Concentrated Decontaminant</td>
<td>Research Products International Corp.</td>
</tr>
</tbody>
</table>
1.5 Organic Solvents

Place your organic solvents in glass bottles or carboys the solvents originally came in or in ones provided by RM&S. Don’t put them in the sewer. Halogenated solvents (e.g., chloroform, carbon tetrachloride and dichloromethane) and their mixtures should be kept separate as they are more difficult to dispose of. Be sure to deface or remove original label and attach Chemical Discard tag to bottle.

Call RM&S and we’ll pick up your spent organic solvents and their associated organic solutes. When we pick up the solvents, the contents will then be commingled in 55 gallon drums and shipped off campus for incineration. We have to pump the contents, so they must be fluid and not contain any solids, precipitates or residues.

1. Substances That Should Not Be Put Into Solvent Waste Containers

The following substances are inappropriate for incineration. Don’t put them into your organic waste containers. They should be collected in separate containers.

- Solutions of acids or bases
- Aqueous solutions of toxic organic chemicals
- Metals (e.g., Sb, As, Ba, Cd, Cr, Pb, Hg, Ni, Se, Ag)
- Vacuum pump oil
- Sulfides or inorganic cyanides
- Strong oxidizers or reducers
- Water reactive substances
- Unknowns
- Large amounts of water

2. Waste Analysis

To comply with EPA regulations, you must complete our Chemical Discard tag when giving us waste. You’ll need to complete a form for each container. You must list the major components of your waste on the form and particularly note all of the following:

- Halogenated compounds (e.g., CHCl3, CH2CL2, CCl4, and solutes)
- Metals (e.g., Pb, Hb, Ag, Cr)
- Sulfur compounds (e.g., CS2, DMSO, and solutes)
- Hazardous Chemicals listed in Section 1.2
- Solvents

Please be sure that your values reflect a reasonable, defendable estimate. We’re required to routinely analyze waste to see if there are discrepancies between waste content and information reported on your form.

3. Waste Solvent Storage
To avoid fumes, you may wish to initially collect waste solvents in another vessel such as a beaker with a watch glass on top or a metal can with spring loaded cover (available from Scientific Products or Fisher, called safety can or liquid disposal can). This may be stored conveniently in a fume hood.

1.6 Liquids Other Than Acids, Bases, and Organic Solvents

This section deals with six other types of liquid chemicals. For liquids not covered by these sections, use Section 1.2, “What is Hazardous?” to determine whether the liquid is hazardous. Package hazardous liquids according to Section 1.13 and give to RM&S. Dispose of nonhazardous, water-soluble liquids into the sewer system.

1. Aqueous Solutions of Toxic Organic Chemicals

For highly toxic chemicals, the decision as to whether an aqueous solution should be incinerated, treated in some way, or put into the sewer system depends on the toxicity and concentration of the solute. This decision is made by RM&S staff after consultation with its desk references as well as the appropriate disposal facility.

If you think that the sewer system is not an appropriate route of disposal for an aqueous solution (because the organic solute is highly toxic), package it according to Section L and give to RM&S. We will evaluate the solution for its appropriate route of disposal.

In general, aqueous solutions of organic chemicals should be put into the sewer system if they are neutral, nonreactive, nonignitable and the organic solute is not highly toxic. Call RM&S if you have any questions.

1.7 Solids

Package tightly capped containers of hazardous solid chemicals according to the instructions given in 1.13. To determine whether or not a chemical is hazardous, see Section 1.2. Section 1.3 lists chemicals that may be disposed of in the normal trash. You can dissolve small amounts of hazardous organic solids in an organic solvent and place them into solvent waste containers.

1.8 Potentially Explosive and Other Reactive Chemicals

1.8.1 Potentially Explosive Chemicals

You should package each container of potentially explosive chemicals separately from other chemicals. Follow the packaging instructions in Section 1.13 and label the box and form clearly as to hazardous characteristics and special handling precautions. In addition, when calling for a pickup, please inform RM&S that you
have potentially explosive materials. Potentially explosive chemicals include:

- Ammonium nitrate
- Diazo compounds
- Hydrazine compounds
- Nitrocellulose
- Peroxide-forming agents
- Picric Acid

A. Peroxide Forming Agents

Peroxides are low power explosives and very sensitive to shock and heat. A variety of organic compounds react with oxygen from the air to form unstable peroxides. Well-known peroxide forming compounds include:

- Diethyl Ether
- Tetrahydrofuran
- Isopropyl Ether
- Other ethers

Other peroxide forming agents include:
- Aldehydes
- Compounds with benzylic hydrogens
- Compounds with allyl groups
- Vinlys

B. Peroxide Formation and Safety Tips

1. Exposure of any of the peroxide-forming agents to light or air increase the rate of peroxide formation. Therefore, store these agents in full, light-tight containers.
2. Refrigeration does not prevent peroxide formation.
3. Order small amounts frequently to decrease storagetime.
4. Date new containers when opened.
5. Be particularly cautious with materials of unknown vintage. Do not attempt to remove caps from containers that may cause sparks. Call RM&S for advice or assistance when such containers are found.
6. Never distill peroxide-forming solvents unless they are known to be free of peroxides. Peroxides concentrated in the residue can pose a serious explosion hazard.

C. Peroxide Testing and Disposal

1. Before beginning work with a peroxide-forming agent, determine its peroxide content. Dispose of agents containing greater than 80 ppm peroxide. Easy-to-use quantitative peroxide test strips are available from Scientific Products or Aldrich.
2. Materials found to contain peroxides (greater than 80 ppm) should be treated prior to disposal. Methods for removal of peroxides involve the addition of reducing agent such as ferrous sulfate (for diethyl ether peroxides) or sodium metabisulfite (for isopropyl ether...
peroxides).

3. The treated solvent should be placed in a waste container and the empty container rinsed with water. Most peroxides are water soluble and the rinsate can be put in the sewer system.

1.9.2 Strong Oxidizers and Reducers

The best way to dispose of oxidizers and reducers is to chemically neutralize them. You should treat the chemicals listed below in your laboratory. For information on treatment techniques, please call us. If you choose not to neutralize these chemicals, contact RM&S for pickup and disposal.

STRONG OXIDIZERS

- Chromic acid (fresh)
- Metallic chlorates
- Metallic nitrates
- Metallic perchlorates
- Metallic permanganates
- Perchloric acid

STRONG REDUCERS

- n-Butyl lithium
- Calcium hydride
- Metallic sulfides
- Sodium hydride
- Stannous chloride

1.8.3 Other Reactives (Including Water Reactives)

Listed below are a variety of reactive materials that you should give to RM&S for disposal. Package any liquids separately from solids and please note special hazards and/or handling precautions on each box. See 1.13 for additional packaging and labeling instructions.

- Acetyl chloride
- Bezoyl peroxide
- Bromine
- Calcium metal
- Lithium metal
- Phosphorous (yellow)
- Potassium metal
- Sodium metal
- Thionyl chloride

1.10 Precipitates, Semisolids, Residues, Gels, etc.

Since they can’t be pumped, don’t put precipitates, semisolids, residues or gels of any kind into solvent waste containers. If separable, the liquid phase should first be removed by decantation, filtration, evaporation or absorption. Use Section 1.2 to determine whether the material is hazardous or call us for assistance. If the material is hazardous, package it in leak-proof containers according to 1.13 and contact...
1.11 Labware Contaminated with Toxic Chemicals

Contaminated labware disposal can be a problem if the contaminant(s) is/are highly toxic. Labware pertains to disposable lab items, such as gloves, bench top coverings, pipets, test tubes, aprons, etc. The decision as to whether contaminated labware should be placed in a secure landfill, treated in some way, or put into the normal trash depends upon the toxicity and concentration of the contaminant.

If you feel that the normal trash is not an appropriate route of disposal for your contaminated labware (because the contaminant has a high toxicity), package it according to 1.13 and let RM&S pick it up. We will evaluate the labware for its appropriate route of disposal.

All PCB contaminated labware 50 ppm or greater must be given to RM&S for disposal.

In general, labware contaminated with chemicals should be put into the normal trash if it is nonreactive, nonignitable and the contaminant is not highly toxic. Call RM&S if you have any questions. Procedures for decontaminating nondisposable items are also available.

1.12 Unknown Chemicals

You must make every effort to provide an accurate description of all chemicals you give us. Unknown chemicals present serious problems for the University. Without a description, we can’t handle or dispose of a chemical in a safe manner. Disposal companies will not accept chemical waste without an analysis, and an analysis of one sample could easily cost $1,000.

1. Investigation of Unknown Chemicals

We offer assistance in investigating the identity of unknown chemicals. Any information you can provide about an unknown chemical you wish to dispose of greatly aids identification. For example, even knowing whether or not a chemical is organic or inorganic is helpful.

2. Procedure

Call RM&S if you have an unknown chemical. Don’t move it from its location if
possible. An RM&S staff member will come to your lab to investigate.

3. Reducing the Problem

You can reduce the occurrence of unknown chemicals by being thorough in maintaining labels on chemical containers. Periodic review of chemical stock and careful record keeping lessens the chance of discovering containers with missing labels.

4. Moving? Call Us!!

We often receive unknown and unwanted chemicals when new personnel enter a laboratory. To alleviate this problem, we offer assistance to individuals planning to leave their lab. This assistance includes identification of unknowns, sorting of unwanted chemicals and redistribution for recycling purposes. Before a faculty member leaves the University, she/he or the department should contact RM&S to ensure that all chemicals have been safely and correctly dealt with. Proper identification of the materials you give us is also important. Because of EPA regulations, we must know the identity of each container.

1.13 Packaging and Labeling

Good packaging increases safety when we handle and transport your all material we receive from labs. Please follow these rules when giving material to RM&S:

1. Label each container you package with its identity. Attach a properly, completed Chemical Discard Tag on each waste container.
2. Consider chemical compatibility when packaging a variety of items.
3. Put chemicals into closed containers that will not leak.
4. Pack liquids separately from solids.
5. If you have multiple containers of the same chemical, pack your chemicals in a strong cardboard box. Do not seal box as RM&S staff will check each container for proper identification.
6. Call RM&S (1-5037) and let them know you have waste for pickup.

Routine pickups are scheduled Galvin, Stepan, Nieuwland, Fitzpatrick Cushing, Stinson-Remick, Raclin-Carmichael and Jordan Halls. If you are not located in one of these buildings, every effort will be made to pick up the waste within 72 hours of the call.
1.14 REFERENCES

All Books Available in RM&S Department Library

f. SAFETY - The Sigma-Aldrich Library of Chemical Safety Data., 1st Edition, 1985 (Sigma-Aldrich Corp., P.O. Box 335, Milwaukee, WI 53201).